Steric 5-Cubes

From Handwiki

  • 5-cube t0.svg
  • 5-cube
  • CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
  • 5-demicube t03 B5.svg
  • Steric 5-cube
  • CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
  • CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
  • 5-demicube t013 B5.svg
  • Stericantic 5-cube
  • CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
  • CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
  • 5-demicube t0 B5.svg
  • Half 5-cube
  • CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
  • CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
  • 5-demicube t023 B5.svg
  • Steriruncic 5-cube
  • CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
  • CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
  • 5-demicube t0123 B5.svg
  • Steriruncicantic 5-cube
  • CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
  • CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Orthogonal projections in B5 Coxeter plane

In five-dimensional geometry, a steric 5-cube or (steric 5-demicube or sterihalf 5-cube) is a convex uniform 5-polytope. There are unique 4 steric forms of the 5-cube. Steric 5-cubes have half the vertices of stericated 5-cubes.

Steric 5-cube

Steric 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,3{3,32,1}
  • h4{4,3,3,3
}
Coxeter-Dynkin diagram
  • CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
  • CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
4-faces 82
Cells 480
Faces 720
Edges 400
Vertices 80
Vertex figure {3,3}-t1{3,3} antiprism
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

  • Steric penteract, runcinated demipenteract
  • Small prismated hemipenteract (siphin) (Jonathan Bowers)[1]:(x3o3o *b3o3x - siphin)

Cartesian coordinates

The Cartesian coordinates for the 80 vertices of a steric 5-cube centered at the origin are the permutations of

(±1,±1,±1,±1,±3)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph 5-demicube t03 B5.svg
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph 5-demicube t03 D5.svg 5-demicube t03 D4.svg
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph 5-demicube t03 D3.svg 5-demicube t03 A3.svg
Dihedral symmetry [4] [4]

Related polytopes

Stericantic 5-cube

Stericantic 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,1,3{3,32,1}
  • h2,4{4,3,3,3
}
Coxeter-Dynkin diagram
  • CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
  • CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
4-faces 82
Cells 720
Faces 1840
Edges 1680
Vertices 480
Vertex figure
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

  • Prismatotruncated hemipenteract (pithin) (Jonathan Bowers)[1]:(x3x3o *b3o3x - pithin)

Cartesian coordinates

The Cartesian coordinates for the 480 vertices of a stericantic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±5)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph 5-demicube t013 B5.svg
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph 5-demicube t013 D5.svg 5-demicube t013 D4.svg
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph 5-demicube t013 D3.svg 5-demicube t013 A3.svg
Dihedral symmetry [4] [4]

Steriruncic 5-cube

Steriruncic 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,2,3{3,32,1}
  • h3,4{4,3,3,3
}
Coxeter-Dynkin diagram
  • CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
  • CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
4-faces 82
Cells 560
Faces 1280
Edges 1120
Vertices 320
Vertex figure
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

  • Prismatorhombated hemipenteract (pirhin) (Jonathan Bowers)[1]:(x3o3o *b3x3x - pirhin)

Cartesian coordinates

The Cartesian coordinates for the 320 vertices of a steriruncic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±3,±5)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph 5-demicube t023 B5.svg
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph 5-demicube t023 D5.svg 5-demicube t023 D4.svg
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph 5-demicube t023 D3.svg 5-demicube t023 A3.svg
Dihedral symmetry [4] [4]

Steriruncicantic 5-cube

Steriruncicantic 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,1,2,3{3,32,1}
  • h2,3,4{4,3,3,3
}
Coxeter-Dynkin diagram
  • CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
  • CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
4-faces 82
Cells 720
Faces 2080
Edges 2400
Vertices 960
Vertex figure
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

  • Great prismated hemipenteract (giphin) (Jonathan Bowers)[1]:(x3x3o *b3x3x - giphin)

Cartesian coordinates

The Cartesian coordinates for the 960 vertices of a steriruncicantic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±5,±7)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph 5-demicube t0123 B5.svg
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph 5-demicube t0123 D5.svg 5-demicube t0123 D4.svg
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph 5-demicube t0123 D3.svg 5-demicube t0123 A3.svg
Dihedral symmetry [4] [4]

Related polytopes

This polytope is based on the 5-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 23 uniform polytera (uniform 5-polytope) that can be constructed from the D5 symmetry of the 5-demicube, of which are unique to this family, and 15 are shared within the 5-cube family.

References

  1. 1.0 1.1 1.2 1.3 Klitzing, Richard. "5D uniform polytopes (polytera)". https://bendwavy.org/klitzing/dimensions/polytera.htm. 

Further reading

  • Coxeter, H. S. M. (1973). Regular Polytopes (3rd ed.). New York City: Dover. https://books.google.com/books?id=iWvXsVInpgMC. Retrieved 2022-05-19. 
  • Coxeter, H. S. M. (1995-05-17) (in en-CA). Kaleidoscopes: Selected Writings of H.S.M. Coxeter. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons. ISBN 978-0-471-01003-6. OCLC 632987525. http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html. Retrieved 2022-05-19. 
  • Coxeter, H. S. M. (1940-12-01). "Regular and Semi Regular Polytopes I" (in en-CA). Mathematische Zeitschrift (Springer Nature) 46: 380–407. doi:10.1007/BF01181449. ISSN 1432-1823. https://link.springer.com/article/10.1007/BF01181449. Retrieved 2022-05-19. 
  • Coxeter, H. S. M. (1985-12-01). "Regular and Semi-Regular Polytopes II" (in en-CA). Mathematische Zeitschrift (Springer Nature) 188 (4): 559–591. doi:10.1007/BF01161657. ISSN 1432-1823. https://link.springer.com/article/10.1007/BF01161657. Retrieved 2022-05-19. 
  • Coxeter, H. S. M. (1988-03-01). "Regular and Semi-Regular Polytopes III" (in en-CA). Mathematische Zeitschrift (Springer Nature) 200 (1): 3–45. doi:10.1007/BF01161745. ISSN 1432-1823. https://link.springer.com/article/10.1007/BF01161745. Retrieved 2022-05-19. 
  • Johnson, Norman W. (1991). Uniform Polytopes (Unfinished manuscript thesis). Cite has empty unknown parameter: |1= (help)
  • Johnson, Norman W. (1966). The Theory of Uniform Polytopes and Honeycombs (PhD thesis). University of Toronto. Retrieved 2022-05-19.

External links

  • Weisstein, Eric W.. "Hypercube". http://mathworld.wolfram.com/Hypercube.html. 
  • Polytopes of Various Dimensions
  • Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron Octahedron • Cube Demicube Dodecahedron • Icosahedron
Uniform 4-polytope 5-cell 16-cell • Tesseract Demitesseract 24-cell 120-cell • 600-cell
Uniform 5-polytope 5-simplex 5-orthoplex • 5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex • 6-cube 6-demicube 122 • 221
Uniform 7-polytope 7-simplex 7-orthoplex • 7-cube 7-demicube 132 • 231 • 321
Uniform 8-polytope 8-simplex 8-orthoplex • 8-cube 8-demicube 142 • 241 • 421
Uniform 9-polytope 9-simplex 9-orthoplex • 9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex • 10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplex • n-cube n-demicube 1k2 • 2k1 • k21 n-pentagonal polytope
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds



Retrieved from "https://handwiki.org/wiki/index.php?title=Steric_5-cubes&oldid=3006058"

Categories: [5-polytopes]


Download as ZWI file | Last modified: 05/16/2025 10:26:24 | 6 views
☰ Source: https://handwiki.org/wiki/Steric_5-cubes | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]