Short description: Term in quantum information theory
In quantum information theory, the idea of a typical subspace plays an important role in the proofs of many coding theorems (the most prominent example being Schumacher compression). Its role is analogous to that of the typical set in classical information theory.
Unconditional quantum typicality
Consider a density operator [math]\displaystyle{ \rho }[/math] with the following spectral decomposition:
- [math]\displaystyle{
\rho=\sum_{x}p_{X}( x) \vert x\rangle \langle
x\vert .
}[/math]
The weakly typical subspace is defined as the span of all vectors such that
the sample entropy [math]\displaystyle{ \overline{H}( x^{n}) }[/math] of their classical
label is close to the true entropy [math]\displaystyle{ H( X) }[/math] of the distribution
[math]\displaystyle{ p_{X}( x) }[/math]:
- [math]\displaystyle{
T_{\delta}^{X^{n}}\equiv\text{span}\left\{ \left\vert x^{n}\right\rangle
:\left\vert \overline{H}( x^{n}) -H( X) \right\vert
\leq\delta\right\} ,
}[/math]
where
- [math]\displaystyle{
\overline{H}( x^{n}) \equiv-\frac{1}{n}\log( p_{X^{n}
}( x^{n}) ) , }[/math]
- [math]\displaystyle{ H( X) \equiv-\sum_{x}p_{X}( x) \log p_{X}(
x) . }[/math]
The projector [math]\displaystyle{ \Pi_{\rho,\delta}^{n} }[/math] onto the typical subspace of [math]\displaystyle{ \rho }[/math] is
defined as
- [math]\displaystyle{
\Pi_{\rho,\delta}^{n}\equiv\sum_{x^{n}\in T_{\delta}^{X^{n}}}\vert
x^{n}\rangle \langle x^{n}\vert ,
}[/math]
where we have "overloaded" the symbol
[math]\displaystyle{ T_{\delta}^{X^{n}} }[/math] to refer also to the set of [math]\displaystyle{ \delta }[/math]-typical sequences:
- [math]\displaystyle{
T_{\delta}^{X^{n}}\equiv\left\{ x^{n}:\left\vert \overline{H}\left(
x^{n}\right) -H( X) \right\vert \leq\delta\right\} .
}[/math]
The three important properties of the typical projector are as follows:
- [math]\displaystyle{
\text{Tr}\left\{ \Pi_{\rho,\delta}^{n}\rho^{\otimes n}\right\}
\geq1-\epsilon, }[/math]
- [math]\displaystyle{ \text{Tr}\left\{ \Pi_{\rho,\delta}^{n}\right\} \leq2^{n\left[ H\left(
X\right) +\delta\right] }, }[/math]
- [math]\displaystyle{ 2^{-n\left[ H( X) +\delta\right] }\Pi_{\rho,\delta}^{n}
\leq\Pi_{\rho,\delta}^{n}\rho^{\otimes n}\Pi_{\rho,\delta}^{n}\leq2^{-n\left[
H( X) -\delta\right] }\Pi_{\rho,\delta}^{n}, }[/math]
where the first property holds for arbitrary [math]\displaystyle{ \epsilon,\delta\gt 0 }[/math] and
sufficiently large [math]\displaystyle{ n }[/math].
Conditional quantum typicality
Consider an ensemble [math]\displaystyle{ \left\{ p_{X}( x) ,\rho_{x}\right\}
_{x\in\mathcal{X}} }[/math] of states. Suppose that each state [math]\displaystyle{ \rho_{x} }[/math] has the
following spectral decomposition:
- [math]\displaystyle{
\rho_{x}=\sum_{y}p_{Y|X}( y|x) \vert y_{x}\rangle
\langle y_{x}\vert .
}[/math]
Consider a density operator [math]\displaystyle{ \rho_{x^{n}} }[/math] which is conditional on a classical
sequence [math]\displaystyle{ x^{n}\equiv x_{1}\cdots x_{n} }[/math]:
- [math]\displaystyle{
\rho_{x^{n}}\equiv\rho_{x_{1}}\otimes\cdots\otimes\rho_{x_{n}}.
}[/math]
We define the weak conditionally typical subspace as the span of vectors
(conditional on the sequence [math]\displaystyle{ x^{n} }[/math]) such that the sample conditional entropy
[math]\displaystyle{ \overline{H}( y^{n}|x^{n}) }[/math] of their classical labels is close
to the true conditional entropy [math]\displaystyle{ H( Y|X) }[/math] of the distribution
[math]\displaystyle{ p_{Y|X}( y|x) p_{X}( x) }[/math]:
- [math]\displaystyle{
T_{\delta}^{Y^{n}|x^{n}}\equiv\text{span}\left\{ \left\vert y_{x^{n}}
^{n}\right\rangle :\left\vert \overline{H}( y^{n}|x^{n})
-H( Y|X) \right\vert \leq\delta\right\} ,
}[/math]
where
- [math]\displaystyle{
\overline{H}( y^{n}|x^{n}) \equiv-\frac{1}{n}\log\left(
p_{Y^{n}|X^{n}}( y^{n}|x^{n}) \right) , }[/math]
- [math]\displaystyle{ H( Y|X) \equiv-\sum_{x}p_{X}( x) \sum_{y}
p_{Y|X}( y|x) \log p_{Y|X}( y|x) .
}[/math]
The projector [math]\displaystyle{ \Pi_{\rho_{x^{n}},\delta} }[/math] onto the weak conditionally typical
subspace of [math]\displaystyle{ \rho_{x^{n}} }[/math] is as follows:
- [math]\displaystyle{
\Pi_{\rho_{x^{n}},\delta}\equiv\sum_{y^{n}\in T_{\delta}^{Y^{n}|x^{n}}
}\vert y_{x^{n}}^{n}\rangle \langle y_{x^{n}}^{n}\vert ,
}[/math]
where we have again overloaded the symbol [math]\displaystyle{ T_{\delta}^{Y^{n}|x^{n}} }[/math] to refer
to the set of weak conditionally typical sequences:
- [math]\displaystyle{
T_{\delta}^{Y^{n}|x^{n}}\equiv\left\{ y^{n}:\left\vert \overline{H}\left(
y^{n}|x^{n}\right) -H( Y|X) \right\vert \leq\delta\right\} .
}[/math]
The three important properties of the weak conditionally typical projector are
as follows:
- [math]\displaystyle{
\mathbb{E}_{X^{n}}\left\{ \text{Tr}\left\{ \Pi_{\rho_{X^{n}},\delta}
\rho_{X^{n}}\right\} \right\} \geq1-\epsilon, }[/math]
- [math]\displaystyle{ \text{Tr}\left\{ \Pi_{\rho_{x^{n}},\delta}\right\} \leq2^{n\left[
H( Y|X) +\delta\right] }, }[/math]
- [math]\displaystyle{ 2^{-n\left[ H( Y|X) +\delta\right] }\ \Pi_{\rho_{x^{n}}
,\delta} \leq\Pi_{\rho_{x^{n}},\delta}\ \rho_{x^{n}}\ \Pi_{\rho_{x^{n}
},\delta} \leq2^{-n\left[ H( Y|X) -\delta\right] }\ \Pi
_{\rho_{x^{n}},\delta},
}[/math]
where the first property holds for arbitrary [math]\displaystyle{ \epsilon,\delta\gt 0 }[/math] and
sufficiently large [math]\displaystyle{ n }[/math], and the expectation is with respect to the
distribution [math]\displaystyle{ p_{X^{n}}( x^{n}) }[/math].
See also
- Classical capacity
- Quantum information theory
References
- Wilde, Mark M., 2017, Quantum Information Theory, Cambridge University Press, Also available at eprint arXiv:1106.1145
Quantum information science |
|---|
| General |
- Quantum computing
- Qubit
- DiVincenzo's criteria
- Quantum information
- Quantum programming
- Quantum processors
- Cloud-based quantum computing
- Timeline of quantum computing
| |
|---|
| Theorems |
- Bell's theorem
- Gleason's theorem
- Gottesman–Knill theorem
- Holevo's theorem
- Margolus–Levitin theorem
- No-broadcast theorem
- No-cloning theorem
- No-communication theorem
- No-deleting theorem
- No-hiding theorem
- No-teleportation theorem
- PBR theorem
- Quantum threshold theorem
|
|---|
Quantum communication |
- Quantum capacity
- Classical capacity
- Entanglement-assisted classical capacity
- Quantum channel
- Quantum cryptography
- Quantum key distribution
- BB84
- SARG04
- Three-stage quantum cryptography protocol
- Quantum teleportation
- Superdense coding
- LOCC
- Entanglement distillation
|
|---|
| Quantum algorithms |
- Universal quantum simulator
- Deutsch–Jozsa algorithm
- Grover's algorithm
- Quantum Fourier transform
- Shor's algorithm
- Simon's problem
- Quantum phase estimation algorithm
- Quantum counting algorithm
- Quantum annealing
- Quantum algorithm for linear systems of equations
- Amplitude amplification
|
|---|
Quantum complexity theory |
- Quantum Turing machine
- EQP
- BQP
- QMA
- PostBQP
- QIP
|
|---|
Quantum computing models |
- Quantum circuit
- One-way quantum computer
- Adiabatic quantum computation
- Topological quantum computer
|
|---|
Quantum error correction |
- Stabilizer codes
- Entanglement-Assisted Quantum Error Correction
- Shor code
- Steane code
- CSS code
- Quantum convolutional codes
- Toric code
|
|---|
Physical implementations | | Quantum optics |
- Cavity QED
- Circuit QED
- Linear optical quantum computing
- KLM protocol
- Boson sampling
|
|---|
| Ultracold atoms |
- Trapped ion quantum computer
- Optical lattice
|
|---|
| Spin-based |
- Nuclear magnetic resonance QC
- Kane QC
- Loss–DiVincenzo QC
- Nitrogen-vacancy center
|
|---|
Superconducting quantum computing |
- Charge qubit
- Flux qubit
- Phase qubit
- Transmon
|
|---|
|
|---|
| Software |
- libquantum
- OpenQASM
- Q#
- Qiskit
- IBM Q Experience
|
|---|
 | Original source: https://en.wikipedia.org/wiki/Typical subspace. Read more |