Contracted Bianchi Identities

From Handwiki

In general relativity and tensor calculus, the contracted Bianchi identities are:[1]

[math]\displaystyle{ \nabla_\rho {R^\rho}_\mu = {1 \over 2} \nabla_{\mu} R }[/math]

where [math]\displaystyle{ {R^\rho}_\mu }[/math] is the Ricci tensor, [math]\displaystyle{ R }[/math] the scalar curvature, and [math]\displaystyle{ \nabla_\rho }[/math] indicates covariant differentiation.

These identities are named after Luigi Bianchi, although they had been already derived by Aurel Voss in 1880.[2] In the Einstein field equations, the contracted Bianchi identity ensures consistency with the vanishing divergence of the matter stress–energy tensor.

Proof

Start with the Bianchi identity[3]

[math]\displaystyle{ R_{abmn;\ell} + R_{ab\ell m;n} + R_{abn\ell;m} = 0. }[/math]

Contract both sides of the above equation with a pair of metric tensors:

[math]\displaystyle{ g^{bn} g^{am} (R_{abmn;\ell} + R_{ab\ell m;n} + R_{abn\ell;m}) = 0, }[/math]
[math]\displaystyle{ g^{bn} (R^m {}_{bmn;\ell} - R^m {}_{bm\ell;n} + R^m {}_{bn\ell;m}) = 0, }[/math]
[math]\displaystyle{ g^{bn} (R_{bn;\ell} - R_{b\ell;n} - R_b {}^m {}_{n\ell;m}) = 0, }[/math]
[math]\displaystyle{ R^n {}_{n;\ell} - R^n {}_{\ell;n} - R^{nm} {}_{n\ell;m} = 0. }[/math]

The first term on the left contracts to yield a Ricci scalar, while the third term contracts to yield a mixed Ricci tensor,

[math]\displaystyle{ R_{;\ell} - R^n {}_{\ell;n} - R^m {}_{\ell;m} = 0. }[/math]

The last two terms are the same (changing dummy index n to m) and can be combined into a single term which shall be moved to the right,

[math]\displaystyle{ R_{;\ell} = 2 R^m {}_{\ell;m}, }[/math]

which is the same as

[math]\displaystyle{ \nabla_m R^m {}_\ell = {1 \over 2} \nabla_\ell R. }[/math]

Swapping the index labels l and m on the left side yields

[math]\displaystyle{ \nabla_\ell R^\ell {}_m = {1 \over 2} \nabla_m R. }[/math]

See also

  • Bianchi identities
  • Einstein tensor
  • Einstein field equations
  • General theory of relativity
  • Ricci calculus
  • Tensor calculus
  • Riemann curvature tensor

Notes

  1. "Sui simboli a quattro indici e sulla curvatura di Riemann" (in Italian), Rend. Acc. Naz. Lincei 11 (5): 3–7, 1902, https://archive.org/stream/rendiconti51111902acca#page/n9/mode/2up 
  2. Voss, A. (1880), "Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannigfaltigketien", Mathematische Annalen 16 (2): 129–178, doi:10.1007/bf01446384, https://zenodo.org/record/2440927 
  3. Synge J.L., Schild A. (1949). Tensor Calculus. pp. 87–89–90. 

References

  • Lovelock, David; Hanno Rund (1989) [1975]. Tensors, Differential Forms, and Variational Principles. Dover. ISBN 978-0-486-65840-7. 
  • Synge J.L., Schild A. (1949). Tensor Calculus. first Dover Publications 1978 edition. ISBN 978-0-486-63612-2. https://archive.org/details/tensorcalculus00syng. 
  • J.R. Tyldesley (1975), An introduction to Tensor Analysis: For Engineers and Applied Scientists, Longman, ISBN 0-582-44355-5 
  • D.C. Kay (1988), Tensor Calculus, Schaum’s Outlines, McGraw Hill (USA), ISBN 0-07-033484-6 
  • T. Frankel (2012), The Geometry of Physics (3rd ed.), Cambridge University Press, ISBN 978-1107-602601 




Retrieved from "https://handwiki.org/wiki/index.php?title=Physics:Contracted_Bianchi_identities&oldid=3280701"

Categories: [Concepts in physics] [Tensors] [General relativity]


Download as ZWI file | Last modified: 09/20/2024 01:20:32 | 3 views
☰ Source: https://handwiki.org/wiki/Physics:Contracted_Bianchi_identities | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]