Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Nil group

From Encyclopedia of Mathematics - Reading time: 1 min


A group in which any two elements $x$ and $y$ are connected by a relation

$$[[\ldots[[x,y]y],\ldots]y]=1,$$

where the square brackets denote the commutator

$$[a,b]=a^{-1}b^{-1}ab$$

and the number $n$ of commutators in the definition depends, generally speaking, on the pair $x,y$. When $n$ is bounded for all $x,y$ in the group, the group is called an Engel group. Every locally nilpotent group is a nil group. The converse is not true, in general, but it is under some additional assumptions, for example, when the group is locally solvable (cf. Locally solvable group).

Occasionally the term "nil group" is used in a different meaning. Namely, a nil group is a group in which every cyclic subgroup is subnormal, that is, occurs in some subnormal series of the group (see Normal series of a group).

References[edit]

[1] A.G. Kurosh, "The theory of groups" , 1–2 , Chelsea (1955–1956) (Translated from Russian)


Comments[edit]

In [a1] it has been proved that there are periodic Engel groups that are not locally nilpotent.

References[edit]

[a1] E.S. Golod, "On nil-algebras and residually finite $p$-groups" Transl. Amer. Math. Soc. , 48 (1965) pp. 103–106 Izv. Akad. Nauk SSSR Ser. Mat. , 28 (1964) pp. 273–276

How to Cite This Entry: Nil group (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Nil_group
1 views | Status: cached on October 20 2023 01:24:26
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF