Asbestos causes DNA damage directly by mechanically interfering with the segregation of chromosomes during mitosis and indirectly by inducing mesothelial cells and macrophages, to release mutagenic reactive oxygen and nitrogen species. Asbestos fibres have been shown to alter the function and secretory properties of macrophages, ultimately creating conditions which favor the development of mesothelioma. Following asbestos phagocytosis, macrophages generate increased amounts of hydroxyl radicals, which are normal by-products of cellular anaerobic metabolism. However, these free radicals are also known clastogenic and membrane-active agents thought to promote asbestos carcinogenicity. These oxidants can participate in the oncogenic process by directly and indirectly interacting with DNA, modifying membrane-associated cellular events, including oncogene activation and perturbation of cellular antioxidant defences. Genes involved in the pathogenesis of mesothelioma include BAP1, CDKN2A, WT1, NF2, and TP53. On gross pathology, pleural mesothelioma is characterized by discrete plaques and nodules that coalesce to produce a sheet-like tumor, with the pleural surface seeding of malignant mesothelioma cells. Based on the histology, mesothelioma may be classified into 3 subtypes: epithelial, sarcomatoid, and biphagic. Mesothelioma is demonstrated by positivity to tumor markers, such as calretinin, epithelial membrane antigen, cytokeratin, and mesothelin.
Asbestos fibres have been shown to alter the function and secretory properties of macrophages, ultimately creating conditions which favor the development of mesothelioma.
Following asbestos phagocytosis, macrophages generate increased amounts of hydroxyl radicals, which are normal by-products of cellular anaerobic metabolism.
However, these free radicals are also known clastogenic and membrane-active agents thought to promote asbestos carcinogenicity. These oxidants can participate in the oncogenic process by directly and indirectly interacting with DNA, modifying membrane-associated cellular events, including oncogene activation and perturbation of cellular antioxidant defences.
The mesothelium consists of a single layer of flattened to cuboidal cells forming the epithelial lining of the serous cavities of the body including the peritoneal, pericardial and pleural cavities.
Deposition of asbestos fibres in the parenchyma of the lung may result in the penetration of the visceral pleura from where the fibre can then be carried to the pleural surface, thus leading to the development of malignant mesothelial plaques.
The processes leading to the development of peritoneal mesothelioma remain unresolved, although it has been proposed that asbestos fibres from the lung are transported to the abdomen and associated organs via the lymphatic system.
Additionally, asbestos fibres may be deposited in the gut after ingestion of sputum contaminated with asbestos fibres.
Asbestos also may possess immunosuppressive properties. For example, chrysotile fibres have been shown to depress the in-vitro proliferation of phytohemagglutinin-stimulated peripheral blood lymphocytes, suppress natural killer cell lysis, and significantly reduce lymphokine-activated killer cell viability and recovery.
Furthermore, genetic alterations in asbestos-activated macrophages may result in the release of potent mesothelial cell mitogens such as platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β) which in turn, may induce the chronic stimulation and proliferation of mesothelial cells after injury by asbestos fibres.
Survivors of radiation therapy have been found to develop mesothelioma according to several studies. Following cancers have been studied post-radiation therapy which are seen to develop mesothelioma:[5][6][7]
Asbestos has also been shown to mediate the entry of foreign DNA into target cells. Incorporation of this foreign DNA may lead to mutations and oncogenesis, by several possible mechanisms:
The following features are seen on gross pathology of mesothelioma:[15]
On gross pathology, pleural mesothelioma is characterized by discrete plaques and nodules that coalesce to produce a sheet-like tumor, with the pleural surface seeding of malignant mesothelioma cells.
The growth usually starts at the inferior margins of the pleura and may invade the diaphragm.
The lung and interlobar fissures may also be involved.
The cytological and histological diagnosis can be difficult, with mesothelial hyperplasia and metastatic adenocarcinoma appearing similar. Specific markers may be helpful in the diagnosis of mesothelioma.[17]