An atmosphere (symbol: atm) is a unit of pressure measurement defined as 101,325 Pa.[1] For practical purposes, it is often replaced by the bar, defined as 100,000 Pa.[2] The difference between an atm and a bar, which is about 1%, is not significant for many applications, and is within the error range of common pressure gauges.
In 1954 the 10th Conférence Générale des Poids et Mesures (CGPM) adopted standard atmosphere for general use and affirmed its definition of being precisely equal to 1,013,250 dynes per square centimeter (101,325 Pa).[1] This value was intended to represent the mean atmospheric pressure at mean sea level at the latitude of Paris, France, and as a practical matter, truly reflects the mean sea level pressure for many of the industrialized nations (those with latitudes similar to Paris).
In chemistry, the original definition of "Standard Temperature and Pressure" was a reference temperature of 0 °C (273.15 K) and pressure of 101.325 kPa (1 atm). However, in 1982, the International Union of Pure and Applied Chemistry (IUPAC) recommended that for the purposes of specifying the physical properties of substances, the "standard pressure" should be defined as precisely 100 kPa (exactly 1 bar).[2] However, the atm continues to be used quite often as a unit of pressure.
pascal (Pa) |
bar (bar) |
atmosphere (atm) |
torr (torr) |
pound-force per square inch (psi) |
kilogram-force per square centimeter (kgf/cm2) | |
---|---|---|---|---|---|---|
1 Pa | ≡ 1 N/m2 | 10−5 | 9.8692×10−6 | 7.5006×10−3 | 145.04×10−6 | 1.01972×10−5 |
1 bar | 100,000 | ≡ 106 dyn/cm2 | 0.98692 | 750.06 | 14.504 | 1.01972 |
1 atm | 101,325 | 1.01325 | ≡ 1 atm | 760 | 14.696 | 1.03323 |
1 torr | 133.322 | 1.3332×10−3 | 1.3158×10−3 | ≡ 1 torr ≈ 1 mmHg |
19.337×10−3 | 1.35951×10−3 |
1 psi | 6,894.76 | 68.948×10−3 | 68.046×10−3 | 51.715 | ≡ 1 lbf/in2 | 7.03059×10−2 |
1 kgf/cm2 | 98,066.5 | 0.980665 | 0.967838 | 735.5576 | 14.22357 | ≡ 1 kgf/cm2 |
Example reading: 1 Pa = 1 N/m2 = 10−5 bar = 9.8692×10−6 atm = 7.5006×10−3 torr, etc.
Note: mmHg is an abbreviation for millimetre of mercury
About the torr: There is no consensus in the technical literature about whether the name of the torr should be "Torr" or "torr". Nor is there any consensus about whether the symbol for that unit of pressure should be "Torr" or "torr". Both the United Kingdom's National Physical Laboratory (see Pressure Units) and New Zealand's Measurement Standards Laboratory (see Barometric Pressure Units) use "torr" as the name and as the symbol. An extensive search of the website of the U.S. National Institute of Standards and Technology found no such clear-cut definitions. Therefore, this table uses "torr" as both the name and the symbol.
A pressure of 1 atm can also be stated as:
Bourdon tube pressure gauges, vehicle tire gauges and many other types of pressure gauges are zero referenced to atmospheric pressure, which means that they measure the pressure above atmospheric pressure. However, absolute pressures are zero referenced to a complete vacuum. Thus, the absolute pressure of any system is the gauge pressure of the system plus atmospheric pressure. Any system with an absolute pressure less than one atmosphere has a negative gauge pressure.
In the United States of America, where pressures are still often expressed in pounds per square inch (symbol psi), gauge pressures are referred to as psig and absolute pressures are referred to as psia. Gauge pressure is also sometimes spelled as gage pressure.
Sometimes, the context in which the word pressure is used helps to identify it as meaning either the absolute or gauge pressure. However, in truth, whenever a pressure is expressed in any units (atm, bar, Pa, psi, etc.), it should be denoted in some manner as being either absolute or gauge pressure to avoid any possible misunderstanding. One recommended way of doing so is to use modifiers such as, for example atm (absolute), kPa (absolute) and (bar gauge) or atm-absolute, kPa-absolute and bar-gauge.[3][4] This recommendation also applies to any other pressure units as well.