Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Cauchy sequence

From Citizendium - Reading time: 2 min

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a Cauchy sequence is a sequence in a metric space with the property that elements in that sequence cluster together more and more as the sequence progresses. Another way of thinking of the clustering is that the distance between any two elements diminishes as their indexes grow larger and larger.

A convergent sequence in a metric space always has the Cauchy property, but depending on the underlying space, the Cauchy sequences may be convergent or not. This leads to the notion of a complete metric space as one in which every Cauchy sequence converges to a point of the space.

Formal definition[edit]

Let be a metric space. Then a sequence of elements in X is a Cauchy sequence if for any real number there exists a positive integer , dependent on , such that for all . In limit notation this is written as .

References[edit]


Licensed under CC BY-SA 3.0 | Source: https://citizendium.org/wiki/Cauchy_sequence
2 views |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF