In topology, a discrete space is a topological space with the discrete topology, in which every subset is open.
Properties[edit]
- A discrete space is metrizable, with the topology induced by the discrete metric.
- A discrete space is a uniform space with the discrete uniformity.
- A discrete space is compact if and only if it is finite.
- A discrete space is connected if and only if it has at most one point.
- Every map from a discrete space to a topological space is continuous.
References[edit]