Given two integers d and a, where d is nonzero, d is said to divide a, or d is said to be a divisor of a, if and only if there is an integer k such that dk = a. For example, 3 divides 6 because 3 · 2 = 6. Here 3 and 6 play the roles of d and a, while 2 plays the role of k. Though any number divides itself (as does its negative), it is said not to be a proper divisor. The number 0 is not considered to be a divisor of any integer.
More examples:
If is a divisor of a (we also say that divides , this fact may be expressed by writing . Similarly, if does not divide , we write . For example, but .
(If is a divisor of (), we say is a multiple of . For example, since , 12 is a multiple of 4. If both and are divisors of , we say is a common multiple of and . Ignoring the sign (i.e., only considering nonnegative integers), there is a unique greatest common divisor of any two integers and written or, more commonly, . The greatest common divisor of 12 and 8 is 4, the greatest common divisor of 15 and 16 is 1. Two numbers with a greatest common divisor of 1 are said to be relatively prime. Complementary to the notion of greatest common divisor is least common multiple. The least common multiple of and is the smallest (positive) integer such that and . Thus, the least common multiple of 12 and 9 is 36 (written ).
In higher mathematics, the notion of divisor has been abstracted from the integers to the context of general commutative rings. In this setting, they might be termed abstract divisors.