Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Homeomorphism

From Citizendium - Reading time: 1 min


This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a homeomorphism is a function that maps one topological space to another with the property that it is bijective and both the function and its inverse are continuous with respect to the associated topologies. A homeomorphism indicates that the two topological spaces are "geometrically" alike, in the sense that points that are "close" in one space are mapped to points which are also "close" in the other, while points that are "distant" are also mapped to points which are also "distant". In differential geometry, this means that one topological space can be deformed into the other by "bending" and "stretching".

Formal definition[edit]

Let (X,OX) and (Y,OY) be topological spaces. A function f:(X,OX)(Y,OY) is a homeomorphism between (X,OX) and (Y,OY) if it has the following properties:

  1. f is a bijective function (i.e., it is one-to-one and onto)
  2. f is continuous
  3. The inverse function f1:(Y,OY)(X,OX) is a continuous function.

If some homeomorphism exists between two topological spaces (X,OX) and (Y,OY) then they are said to be homeomorphic to one another. Homeomorphism (in the sense of being homeomorphic) is an equivalence relation.

Topological property[edit]

A topological property is one which is preserved by homeomorphism. Examples include


Licensed under CC BY-SA 3.0 | Source: https://citizendium.org/wiki/Homeomorphism
8 views | Status: cached on November 15 2025 21:34:22
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF