Jacobian

From Citizendium - Reading time: 5 min


This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the Jacobi matrix is the matrix of first-order partial derivatives of the (vector-valued) function:

𝐟:nm

(often f maps only from and to appropriate subsets of these spaces). The Jacobi matrix is m × n and consists of m rows of the first-order partial derivatives of f with respect to x1, ...,xn, respectively. This matrix is also known as the functional matrix of Jacobi. The determinant of the Jacobi matrix for n = m is known as the Jacobian. The Jacobi matrix and its determinant have several uses in mathematics:

  • For m = 1, the Jacobi matrix appears in the second (linear) term of the Taylor series of f. Here the Jacobi matrix is 1 × n (the gradient of f, a row vector).
  • The inverse function theorem states that if m = n and f is continuously differentiable, then f is invertible in the neighborhood of a point x0 if and only if the Jacobian at x0 is non-zero.

The Jacobi matrix and its determinant are named after the German mathematician Carl Gustav Jacob Jacobi (1804 - 1851).

Definition[edit]

Let f be a map of an open subset T of n into m with continuous first partial derivatives,

𝐟:Tm.

That is if

𝐭=(t1,t2,,tn)Tn,

then

x1=f1(t1,t2,,tn)x2=f2(t1,t2,,tn)xm=fm(t1,t2,,tn),

with

𝐱=(x1,x2,,xm)m.

The m × n functional matrix of Jacobi consists of partial derivatives

(f1t1f1t2f1tnf2t1f2t2fmt1fmtn).

The determinant (which is only defined for square matrices) of this matrix is usually written as (take m = n),

𝐉𝐟(𝐭)or(f1,f2,,fn)(t1,t2,,tn).

Example[edit]

Let T be the subset {r, θ, φ | r > 0, 0 < θ<π, 0 <φ <2π} in 3 and let f be defined by

x1x=f1(r,θ,ϕ)=rsinθcosϕx2y=f2(r,θ,ϕ)=rsinθsinϕx3z=f3(r,θ,ϕ)=rcosθ

The Jacobi matrix is

(sinθcosϕrcosθcosϕrsinθsinϕsinθsinϕrcosθsinϕrsinθcosϕcosθrsinθ0)

Its determinant can be obtained most conveniently by a Laplace expansion along the third row

cosθ|rcosθcosϕrsinθsinϕrcosθsinϕrsinθcosϕ|+rsinθ|sinθcosϕrsinθsinϕsinθsinϕrsinθcosϕ|=r2(cosθ)2sinθ+r2(sinθ)3=r2sinθ

The quantities {r, θ, φ} are known as spherical polar coordinates and its Jacobian is r2sinθ.

Coordinate transformation[edit]

Let Tn. The map 𝐟:Tn, is a coordinate transformation if (i) f has continuous first derivatives on T (ii) f is one-to-one on T and (iii) the Jacobian of f is not equal to zero on T.

Multiple integration[edit]

It can be proved [1] that

𝐟(𝐭)ϕ(𝐱)d𝐱=Tϕ(𝐟(𝐭))𝐉𝐟(𝐭)d𝐭.

As an example we consider the spherical polar coordinates mentioned above. Here x = f(t) ≡ f(r, θ, φ) covers all of 3, while T is the region {r > 0, 0 < θ<π, 0 <φ <2π}. Hence the theorem states that

3ϕ(𝐱)d𝐱=00π02πϕ(𝐱(r,θ,ϕ))r2sinθdrdθdϕ.

Geometric interpretation of the Jacobian[edit]

The Jacobian has a geometric interpretation which we expound for the example of n = 3.

The following is a vector of infinitesimal length in the direction of increase in t1,

d𝐠1limΔt10𝐟(t1+Δt1,t2,t3)𝐟(t1,t2,t3)Δt1Δt1=𝐟t1dt1

Similarly, we define

d𝐠2𝐟t2dt2,d𝐠3𝐟t3dt3

The scalar triple product of these three vectors gives the volume of an infinitesimally small parallelepiped,

dV=d𝐠1(d𝐠2×d𝐠3)=𝐟t1(𝐟t2×𝐟t3)dt1dt2dt3

The components of the first vector are given by

𝐟t1(xt1,yt1,zt1)(f1t1,f2t1,f3t1)

and similar expressions hold for the components of the other two derivatives. It has been shown in the article on the scalar triple product that

𝐟t1(𝐟t2×𝐟t3)=|f1t1f2t1f3t1f1t2f2t2f3t2f1t3f2t3f3t3|(f1,f2,f3)(t1,t2,t3)𝐉𝐟(𝐭).

Note that a determinant is invariant under transposition (interchange of rows and columns), so that the transposed determinant being given is of no concern. Finally.

dV=(f1,f2,f3)(t1,t2,t3)dt1dt2dt3𝐉𝐟(𝐭)d𝐭.

Reference[edit]

  1. T. M. Apostol, Mathematical Analysis, Addison-Wesley, 2nd ed. (1974), sec. 15.10

Licensed under CC BY-SA 3.0 | Source: https://citizendium.org/wiki/Jacobian
13 views | Status: cached on November 27 2025 12:17:18
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF