In quantum mechanics, measurement concerns the interaction of a macroscopic measurement apparatus with an observed quantum mechanical system, and the so-called "collapse" of the wavefunction upon measurement from a superposition of possibilities to a defined state. A review can be found in Zurek,[1] and in Riggs.[2]
Measurement in quantum mechanics satisfies these requirements:[2]:
Here (f, g) is shorthand for the scalar product of f and g. For example,
for a single-particle wavefunction in one dimension, with ‘*’ denoting a complex conjugate, and Ω the region in which the particle is confined.
This description is a bit elliptic in that there may be several states corresponding to the eigenvalue j, requiring some further elaboration.
The interpretation of measurement in quantum mechanics has led to a number of puzzles. The most famous illustration is Schrödinger's cat, in which a random quantum event like a radioactive decay is set up to kill a cat in a box. In the microscopic description, the cat is described by a superposition of "alive" and "dead" possibilities, and we have the peculiar result that all is in a state of suspense (the cat is neither alive nor dead, but a superposition of both) until we open the box to see what has happened.[3] Is this uncertainty about us (the observers), or the cat? Can opening a box decide life or death?