Resolution (algebra)

From Citizendium - Reading time: 1 min

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, particularly in abstract algebra and homological algebra, a resolution is a sequence which is used to describe the structure of a module.

If the modules involved in the sequence have a property P then one speaks of a P resolution: for example, a flat resolution, a free resolution, an injective resolution, a projective resolution and so on.

Definition[edit]

Given a module M over a ring R, a resolution of M is an exact sequence (possibly infinite) of modules

· · · → En → · · · → E2E1E0M → 0,

with all the Ei modules over R. The resolution is said to be finite if the sequence of Ei is zero from some point onwards.

Properties[edit]

Every module possesses a free resolution: that is, a resolution by free modules. A fortiori, every module admits a projective resolution. Such an exact sequence may sometimes be seen written as an exact sequence P(M) → M → 0. The minimal length of a finite projective resolution of a module M is called its projective dimension and denoted pd(M). If M does not admit a finite projective resolution then the projective dimension is infinite.

Examples[edit]

A classic example of a projective resolution is given by the Koszul complex K(x).

See also[edit]

References[edit]


Licensed under CC BY-SA 3.0 | Source: https://citizendium.org/wiki/Resolution_(algebra)
19 views | Status: cached on November 10 2024 05:24:56
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF