Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Span (mathematics)

From Citizendium - Reading time: 1 min

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In algebra, the span of a set of elements of a module or vector space is the set of all finite linear combinations of that set: it may equivalently be defined as the intersection of all submodules or subspaces containing the given set.

For S a subset of an R-module M we have

We say that S spans, or is a spanning set for .

A basis is a linearly independent spanning set.

If S is itself a submodule then .

The equivalence of the two definitions follows from the property of the submodules forming a closure system for which is the corresponding closure operator.


Licensed under CC BY-SA 3.0 | Source: https://citizendium.org/wiki/Span_(mathematics)
12 views | Status: cached on November 06 2024 03:06:00
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF