See also:
Gibbons & Brewer (2005:115-118) distinguish the following dimensions along which design languages may vary:
1. Complex vs. simple: E.g. Chinese writing has a notation system including 50’000 characters. In contrast navigation icons used in an airport use a very limited set of symbols. Simple languages require less investment to learn.
2.Precise vs. imprecise. A good example of a precise system is notation system used in chemistry whereas spelling of foreign names or indications about difficulty levels and interactivity in pedagogical metadata are the opposite.
3.Formality & standardization: Formalization helps to add rigor to a design but only standardization (implying systematic analysis) will allow to insure that each element is fully understood.
4.Personal vs. shared. A similar issue is related to the fact that design languages often emerge with individuals, making them public and publicly used involves a longer process of negotiation and creation of a solid symbol system.
5.Implicit vs. explicit. Some design languages (or parts) only may exist implicitly i.e. influence actions and decisions. On the other end of the spectrum, there exist design languages whose terms and rules are fully specified
6.Standardized vs. non standardized: Standardization implies that languages are expected to be functional in a wide setting. Products confirming to a standard can or should function smoothly. Typically, main-stream e-learning standards were made with this goal in mind. Non-standard languages are either ignored or reflect future or different design stances.
7.Computable vs. non-computable. E.g. natural language is rather non-computable, whereas XML-based e-learning formats that we will introduce below can easily be read by a computer program.
As you may implicitly infer from this list, design languages address a range of issues that are important to education. On could argue that their major purpose is to capture abstract and/or implicit ideas to create transferable and discusseable designs. Another argument is related to rigor, i.e. better quality.
“In the field of instructional software development, designers and producers lack a common, explicit notation system (Gibbons, Nelson & Richards, 2000; Waters & Gibbons, 2004). A notation system is an embedded element of a design language and captures abstract ideas to create transferable designs (Gibbons & Brewer, 2005). Part of the reason why designers and producers use different languages and notation systems, even though they are discussing the same instructional software, is simply that they are interested in different aspects of the product and thus need to describe different features and functionalities (Nelson, 2003).” (Boot et al. 2007: 919).
See educational design language.