Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Darboux surfaces

From Encyclopedia of Mathematics - Reading time: 1 min


wreath of

Surfaces associated with an infinitesimal deformation of one of them; discovered by G. Darboux [1]. Darboux surfaces form a "wreath" of 12 surfaces, with radius vectors x1x6,z1z6 satisfying the equations

dzi=[zi+1,dxi],  dxi=[xi1,dzi],

zixi+1=[zi+1,xi], i=16,

xi+6=xi, zi+6=zi;

where zi+1 and xi are in Peterson correspondence, zi+1 and xi1 are in polar correspondence, while zi and xi+1 are poles of a W- congruence. A similar "wreath" is formed by pairs of isometric surfaces of an elliptic space.

References[edit]

[1] G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 4 , Gauthier-Villars (1896)
[2] V.I. Shulikovskii, "Classical differential geometry in a tensor setting" , Moscow (1963) (In Russian)

Comments[edit]

For the notion of a W- congruence cf. Congruence of lines.

References[edit]

[a1] G. Fubini, E. Čech, "Introduction á la géométrie projective différentielle des surfaces" , Gauthier-Villars (1931)
[a2] G. Bol, "Projective Differentialgeometrie" , Vandenhoeck & Ruprecht (1954)

How to Cite This Entry: Darboux surfaces (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Darboux_surfaces
27 views | Status: cached on April 19 2025 08:01:42
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF