The branch of number theory that investigates properties of the integers by elementary methods. These methods include the use of divisibility properties, various forms of the axiom of induction and combinatorial arguments. Sometimes the notion of elementary methods is extended by bringing in the simplest elements of mathematical analysis. Traditionally, proofs are deemed to be non-elementary if they involve complex numbers.
Usually, one refers to elementary number theory the problems that arise in branches of number theory such as the theory of divisibility, of congruences, of arithmetic functions, of indefinite equations, of partitions, of additive representations, of the approximation by rational numbers, and of continued fractions. Quite often, the solution of such problems leads to the need to go beyond the framework of elementary methods. Occasionally, following the discovery of a non-elementary solution of some problem, one also finds an elementary solution of it.
As a rule, the problems of elementary number theory have a history going back over centuries, and they are quite often a source of modern trends in number theory and algebra.
From preserved ancient Babylonian cuneiform tablets one may deduce that the Babyloneans were familiar with the task of factoring natural numbers into prime factors. In the 5th century B.C. the Pythagoreans established the so-called doctrine of even and odd numbers and justified the proposition that the product of two natural numbers is even if and only if at least one of the factors is even. A general theory of divisibility was created, in essence, by Euclid. In his Elements (3rd century B.C.), he introduces an algorithm for finding the greatest common divisor of two integers and on this basis he justifies the main theorem of the arithmetic of integers: Every natural number can be factored in one and only one way into a product of prime factors.
After C.F. Gauss, at the beginning of the 19th century, constructed a theory of divisibility of complex integers, it became clear that the study of an arbitrary ring must begin with the construction of a divisibility theory in it.
All properties of the integers are connected in one way or another with the prime numbers (cf. Prime number). Therefore, questions on the disposition of the prime numbers in the sequence of natural numbers evoked the interest of scholars. The first proof that the set of prime numbers is infinite is due to Euclid. Only in the middle of the 19th century did P.L. Chebyshev take the following step in the study of the function
for all sufficiently large
In the 3rd century B.C. the sieve of Eratosthenes (cf. Eratosthenes, sieve of) was used to select the prime numbers from the set of natural numbers. In 1918 V. Brun showed that a modification of this method can serve as a basis for the study of a set of "almost primes". He proved the Brun theorem on prime twins. The Brun sieve is a special case of general sieve methods (cf. Sieve method) which give estimates for collections of almost primes not exceeding
Two integers
Many results obtained previously by P. Fermat, L. Euler, J.L. Lagrange, and others, and also the Chinese remainder theorem, can be stated and proved simply in the language of the theory of congruences. One of the most interesting results of this theory is the quadratic reciprocity law.
The ancient Babylonians knew a large number of "Pythagorean triples". Apparently they knew some method for finding arbitrary many integer solutions of the indeterminate equation
Fermat solved the problem of representing natural numbers by sums of two squares of integers. As a result of research by Lagrange (1773) and Gauss (1801) the problem of the representation of integers by a definite binary quadratic form was solved. Gauss developed the general theory of binary quadratic forms. The solution of the problem of representing numbers by forms of higher degree (for example, the Waring problem) and by quadratic forms in several variables usually go beyond the framework of elementary methods. Only certain special cases of such problems can be solved elementarily. An example is Lagrange's theorem: Every natural number is the sum of four squares of integers. It should be mentioned that Diophantus in his Aritmetika repeatedly used the possibility of representing a natural number as the sum of four squares of integers.
To elementary number theory one also reckons the theory of partitions, the foundations of which were laid by Euler (in 1751). One of the basic problems of the theory of partitions is the study of the function
In number theory it is easy to state many problems that can be formulated elementarily and have so far remained unsolved. For example; Is the set of even perfect numbers finite or not? Is there at least one odd perfect number? Is the set of Fermat prime numbers finite or not? Is the set of Mersenne prime numbers finite or not (cf. Mersenne number)? Is the set of prime numbers of the form
[1] | B.A. Venkov, "Elementary number theory" , Wolters-Noordhoff (1970) (Translated from Russian) MR0265267 Zbl 0204.37101 |
[2] | I.M. Vinogradov, "Basic number theory" , Moscow (1981) (In Russian) |
[3] | A.O. Gel'fond, Yu.V. Linnik, "Elementary methods in the analytic theory of numbers" , M.I.T. (1966) (Translated from Russian) MR201368 Zbl 0142.01403 |
[4] | A.Ya. Khinchin, "Continued fractions" , Univ. Chicago Press (1964) (Translated from Russian) MR0161833 Zbl 0117.28601 |
[5] | C.F. Gauss, "Disquisitiones Arithmeticae" , Teubner (1801) (Translated from Latin) MR2308276 MR1876694 MR1847691 MR1356001 MR1167370 MR1138220 MR0837656 MR0638487 MR0479854 MR0197380 Zbl 1167.11001 Zbl 0899.01034 Zbl 0585.10001 Zbl 0136.32301 Zbl 21.0166.04 |
[6] | H. Davenport, "The higher arithmetic" , Hutchinson (1952) MR0050598 Zbl 0049.30901 |
[7] | E. Trost, "Primzahlen" , Birkhäuser (1953) MR0058630 Zbl 0053.36002 |
[8] | G.E. Andrews, "Theory of partitions" , Addison-Wesley (1976) MR0557013 Zbl 0371.10001 |
[9] | , The history of mathematics from Antiquity to the beginning of the XIX-th century , 1–3 , Moscow (1970–1972) (In Russian) |
[10] | H. Wieleitner, "Die Geschichte der Mathematik von Descartes bis zum Hälfte des 19. Jahrhunderts" , de Gruyter (1923) |
[11] | L.E. Dickson, "History of the theory of numbers" , 1–3 , Chelsea, reprint (1971) MR1793101 MR1720467 MR0245501 MR0245500 MR0245499 MR1520248 MR1519706 MR1519382 Zbl 1214.11003 Zbl 1214.11002 Zbl 1214.11001 Zbl 0958.11500 Zbl 60.0817.03 Zbl 49.0100.12 Zbl 48.1114.03 Zbl 48.0137.02 Zbl 47.0100.04 |
[12] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) MR0568909 Zbl 0423.10001 |
[13] | W. Sierpiński, "Elementary theory of numbers" , PWN (1964) (Translated from Polish) MR0227080 MR0175840 Zbl 0122.04402 |
[14] | K. Ireland, M. Rosen, "A classical introduction to modern number theory" , Springer (1982) MR0661047 Zbl 0482.10001 |
A translation of [5] into English is [a1].
For Chebyshev's result mentioned above see also Chebyshev theorems on prime numbers.
A Pythagorean triple is a triple
For representations of numbers by special (quadratic) forms see also Quadratic form; Goldbach problem. More on partitions can be found in Combinatorial analysis.
Concerning the questions stated at the end of the main article above see also Perfect number; Prime number; Twins.
Fermat numbers are the special case of Mersenne numbers, which are of the form
[a1] | C.F. Gauss, "Disquisitiones Arithmeticae" , Yale Univ. Press (1966) (Translated from Latin) MR0197380 Zbl 0136.32301 |
[a2] | D. Shanks, "Solved and unsolved problems in number theory" , Chelsea, reprint (1978) MR0516658 Zbl 0397.10001 |
[a3] | A. Weil, "Number theory: an approach through history: from Hammupari to Legendre" , Birkhäuser (1984) |