Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Ellipsoidal coordinates

From Encyclopedia of Mathematics - Reading time: 1 min


spatial elliptic coordinates

The numbers $ \lambda $, $ \mu $ and $ \nu $ connected with Cartesian rectangular coordinates $ x $, $ y $ and $ z $ by the formulas

$$ x ^ {2} = \frac{( \lambda + a ^ {2} ) ( \mu + a ^ {2} ) ( \nu + a ^ {2} ) }{( b ^ {2} - a ^ {2} ) ( c ^ {2} - a ^ {2} ) } , $$

$$ y ^ {2} = \frac{( \lambda ^ {2} + b ^ {2} ) ( \mu ^ {2} + b ^ {2} ) ( \nu + b ^ {2} ) }{( a ^ {2} - b ^ {2} ) ( c ^ {2} - b ^ {2} ) } , $$

$$ z ^ {2} = \frac{( \lambda + c ^ {2} ) ( \mu + c ^ {2} ) ( \mu + c ^ {2} ) }{( a ^ {2} - c ^ {2} ) ( b ^ {2} - c ^ {2} ) } , $$

where $ - a ^ {2} < \nu < - b ^ {2} < \mu < - c ^ {2} < \lambda < \infty $. The coordinate surfaces are (see Fig.): ellipses $ ( \lambda = \textrm{ const } ) $, one-sheet hyperbolas ( $ \mu = \textrm{ const } $), and two-sheet hyperbolas ( $ \nu = \textrm{ const } $), with centres at the coordinate origin.

Figure: e035420a

The system of ellipsoidal coordinates is orthogonal. To every triple of numbers $ \lambda $, $ \mu $ and $ \nu $ correspond 8 points (one in each octant), which are symmetric to each other relative to the coordinate planes of the system $ O x y z $.

The Lamé coefficients are

$$ L _ \lambda = \frac{1}{2} \sqrt { \frac{( \lambda - \mu ) ( \mu - \nu ) }{( \lambda + a ^ {2} ) ( \lambda + b ^ {2} ) ( \lambda + c ^ {2} ) } } , $$

$$ L _ \mu = \frac{1}{2} \sqrt { \frac{( \lambda - \mu ) ( \nu - \mu ) }{( \mu + a ^ {2} ) ( \mu + b ^ {2} ) ( \mu + c ^ {2} ) } } , $$

$$ L _ \nu = \frac{1}{2} \sqrt { \frac{( \lambda - \nu ) ( \mu - \nu ) }{( \nu + a ^ {2} ) ( \nu + b ^ {2} ) ( \nu + c ^ {2} ) } } . $$

If one of the conditions $ a ^ {2} > b ^ {2} > c ^ {2} > 0 $ in the definition of ellipsoidal coordinates is replaced by an equality, then degenerate ellipsoidal coordinate systems are obtained.

Comments[edit]

Laplace's equation expressed in ellipsoidal coordinates is separable (cf Separation of variables, method of), and leads to Lamé functions.

References[edit]

[a1] G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18
[a2] Harold Jeffreys, Bertha Jeffreys, Methods of Mathematical Physics, 3rd edition, Cambridge University Press (1972) Zbl 0238.00004

How to Cite This Entry: Ellipsoidal coordinates (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Ellipsoidal_coordinates
3 views |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF