Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Equivalent matrices

From Encyclopedia of Mathematics - Reading time: 1 min

$A$ and $B$ over a ring $R$

Matrices such that $A$ can be transformed into $B$ by a sequence of elementary row-and-column transformations, that is, transformations of the following three types: a) permutation of the rows (or columns); b) addition to one row (or column) of another row (or column) multiplied by an element of $R$; or c) multiplication of a row (or column) by an invertible element of $R$. Equivalently, $B$ is obtained from $A$ by multiplication on left or right by a sequence of matrices each of which is either a) a permutation matrix; b) an elementary matrix; c) an invertible diagonal matrix.

Equivalence in this sense is an equivalence relation.


How to Cite This Entry: Equivalent matrices (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Equivalent_matrices
16 views | Status: cached on November 18 2024 07:28:17
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF