2020 Mathematics Subject Classification: Primary: 12-XX [MSN][ZBL]
A field is a commutative, associative ring containing a unit in which the set of
non-zero elements is not empty and forms a group under multiplication
(cf.
Associative rings and algebras). A
field may also be characterized as a simple non-zero commutative,
associative ring containing a unit. Examples of fields: the field of
rational numbers
A subfield of a field
Any field homomorphism is an imbedding. For an arbitrary field
If
Basic problems in the theory of fields consist of giving a description of all subfields of a given field, of all fields containing a given field, i.e. overfields (see Extension of a field), to examine all imbeddings of a field in some other field, to classify fields up to an isomorphism, and to examine the automorphism group of a given field.
A field
Field theory also deals with fields having certain additional
structures, such as differential fields, topological fields, ordered
fields, formally real and formally
Field theory originated (within the framework of the theory of algebraic equations) in the middle of the 19th century. Papers by E. Galois and J.L. Lagrange on group theory and by C.F. Gauss on number theory made it clear that one had to examine the nature of number systems themselves. The concept of a field was put forward in papers by L. Kronecker and R. Dedekind. Dedekind introduced the concept of a field, which he originally called a "rational domainrational domain" . Dedekind's theory was published in the comments and supplements to P.G. Lejeune-Dirichlet's Zahlentheorie. In them, Dedekind substantially supplemented and extended the theory of numbers, the theory of ideals and the theory of finite fields. The term "field" first appeared in the edition of this book in 1871.
The German term for "field" is "Körper" and this is of course the term used in [Le]. The edition cited here as [Le] is a corrected reprint of the 4th edition (Braunschweig, 1893); the 1871 edition was the second.
[Bo] | N. Bourbaki, "Eléments de mathematique. Algèbre", Masson (1981) pp. Chapt. 4–7 MR0643362 Zbl 0498.12001 |
[Ja] | N. Jacobson, "Lectures in abstract algebra", 1. Basic concepts, Springer (1975) MR0041102 Zbl 0326.00001 |
[La] | S. Lang, "Algebra", Addison-Wesley (1974) MR0783636 Zbl 0712.00001 |
[Le] | P.G. Lejeune-Dirichlet, "Zahlentheorie", Chelsea, reprint (1968) Zbl 25.0252.01 Zbl 03.0063.01 |
[Wa] | B.L. van der Waerden, "Algebra", 1–2, Springer (1967–1971) (Translated from German) MR0263582 Zbl 1032.00001 Zbl 1032.00002 |
[ZaSa] | O. Zariski, P. Samuel, "Commutative algebra", 1, Springer (1975) MR0389876 MR0384768 Zbl 0313.13001 |