Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Fold

From Encyclopedia of Mathematics - Reading time: 1 min


A type of singularity of differentiable mappings (cf. Singularities of differentiable mappings).

Let $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $ be a $ C ^ \infty $- function. Then $ x _ {0} \in \mathbf R ^ {n} $ is said to be a fold of $ f $ if

$$ { \mathop{\rm dim} \mathop{\rm Ker} } f ^ { \prime } ( x _ {0} ) = \ { \mathop{\rm dim} \mathop{\rm Coker} } f ^ { \prime } ( x _ {0} ) = 1 $$

and if the Hessian of $ f $ at $ x _ {0} $ is not equal to zero (cf. Hessian of a function). This definition can be generalized to the case of a $ C ^ \infty $- mapping $ f : X \rightarrow Y $ between $ C ^ \infty $- manifolds $ X $ and $ Y $( necessarily of the same dimension), cf. [a1].

The name derives from the following fact: If $ f : X \rightarrow Y $( with $ X $, $ Y $ and $ f $ as above) has a fold at $ x _ {0} \in X $, then there are local coordinates $ ( x _ {1} \dots x _ {n} ) $ in $ X $ vanishing at $ x _ {0} $ and local coordinates $ ( y _ {1} \dots y _ {n} ) $ in $ Y $ vanishing at $ f ( x _ {0} ) $ such that $ f $ has the local representation

$$ f ( x _ {1} \dots x _ {n} ) = \ ( x _ {1} \dots x _ {n-} 1 , x _ {n} ^ {2} ) . $$

References[edit]

[a1] L.V. Hörmander, "The analysis of linear partial differential operators" , 3 , Springer (1985) MR1540773 MR0781537 MR0781536 Zbl 0612.35001 Zbl 0601.35001
[a2] V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , 1 , Birkhäuser (1985) (Translated from Russian) MR777682 Zbl 0554.58001

How to Cite This Entry: Fold (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Fold
30 views |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF