A representation of a group (or algebra, ring, semi-group, etc.) that is not equivalent to a direct sum of non-zero representations of the same group (or algebra, etc.). Thus, the indecomposable representations must be regarded the simplest representations of the relevant algebraic system. With the aid of these representations one can study the structure of the algebraic system, its representation theory and harmonic analysis on the system. A representation of a topological group (or algebra, etc.) in a topological vector space is called indecomposable if it is not equivalent to a topological direct sum of non-zero representations of the same algebraic system.
Every irreducible representation is indecomposable. The class of finite-dimensional indecomposable representations of the group
[1] | A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian) |
[2] | D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) |
[3] | M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) |
[4] | I.M. Gel'fand, V.A. Ponomarev, "Indecomposable representations of the Lorentz group" Russian Math. Surveys , 23 : 2 (1968) pp. 1–58 Uspekhi Mat. Nauk , 23 : 2 (1968) pp. 3–60 |