An information-theoretical measure of the quantity of information contained in one random variable relative to another random variable. Let $ \xi $
and $ \eta $
be random variables defined on a probability space $ ( \Omega , \mathfrak A , {\mathsf P} ) $
and taking values in measurable spaces (cf. Measurable space) $ ( \mathfrak X , S _ {\mathfrak X } ) $
and $ ( \mathfrak Y , S _ {\mathfrak Y } ) $,
respectively. Let $ p _ {\xi \eta } ( C) $,
$ C \in S _ {\mathfrak X } \times S _ {\mathfrak Y } $,
and $ p _ \xi ( A) $,
$ A \in S _ {\mathfrak X } $,
$ p _ \eta ( B) $,
$ B \in S _ {\mathfrak Y } $,
be their joint and marginale probability distributions. If $ p _ {\xi \eta } ( \cdot ) $
is absolutely continuous with respect to the direct product of measures $ p _ \xi \times p _ \eta ( \cdot ) $,
if $ a _ {\xi \eta } ( \cdot ) $
is the (Radon–Nikodým) density of $ p _ {\xi \eta } ( \cdot ) $
with respect to $ p _ \xi \times p _ \eta ( \cdot ) $,
and if $ i _ {\xi \eta } ( \cdot ) = \mathop{\rm log} a _ {\xi \eta } ( \cdot ) $
is the information density (the logarithms are usually taken to base 2 or $ e $),
then, by definition, the amount of information is given by
$$ I ( \xi , \eta ) = \ \int\limits _ {\mathfrak X \times \mathfrak Y } i _ {\xi \eta } ( x , y ) p _ {\xi \eta } ( d x , d y ) = $$
$$ = \ \int\limits _ {\mathfrak X \times \mathfrak Y } a _ {\xi \eta } ( x , y ) \mathop{\rm log} \ a _ {\xi \eta } ( x , y ) p _ \xi ( d x ) p _ \eta ( d y ) . $$
If $ p _ {\xi \eta } ( \cdot ) $ is not absolutely continuous with respect to $ p _ \xi \times p _ \eta ( \cdot ) $, then $ I ( \xi , \eta ) = + \infty $, by definition.
In case the random variables $ \xi $ and $ \eta $ take only a finite number of values, the expression for $ I ( \xi , \eta ) $ takes the form
$$ I ( \xi , \eta ) = \sum _{i=1} ^ { n } \sum _{j=1} ^ { m } p _ {ij} \mathop{\rm log} \ \frac{p _ {ij} }{p _ {i} q _ {i} } , $$
where
$$ \{ p _ {i} \} _ {i=} 1 ^ {n} ,\ \ \{ q _ {j} \} _ {j=} 1 ^ {m} ,\ \ \{ {p _ {ij} } : {i = 1 \dots n ; j = 1 \dots m } \} $$
are the probability functions of $ \xi $, $ \eta $ and the pair $ ( \xi , \eta ) $, respectively. (In particular,
$$ I ( \xi , \xi ) = - \sum _{i=1} ^ { n } p _ {i} \mathop{\rm log} p _ {i} = H ( \xi ) $$
is the entropy of $ \xi $.) In case $ \xi $ and $ \eta $ are random vectors and the densities $ p _ \xi ( x) $, $ p _ \eta ( y) $ and $ p _ {\xi \eta } ( x , y ) $ of $ \xi $, $ \eta $ and the pair $ ( \xi , \eta ) $, respectively, exist, one has
$$ I ( \xi , \eta ) = \ \int\limits p _ {\xi \eta } ( x , y ) \mathop{\rm log} \frac{p _ {\xi \eta } ( x , y ) }{p _ \xi ( x) p _ \eta ( y) } \ d x d y . $$
In general,
$$ I ( \xi , \eta ) = \ \sup I ( \phi ( \xi ) , \psi ( \eta ) ) , $$
where the supremum is over all measurable functions $ \phi ( \cdot ) $ and $ \psi ( \cdot ) $ with a finite number of values. The concept of the amount of information is mainly used in the theory of information transmission.
For references, see , ,