Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Invariant statistic

From Encyclopedia of Mathematics - Reading time: 1 min


A statistic taking constant values on orbits generated by a group of one-to-one measurable transformations of the sample space. Thus, if $ ( \mathfrak X , \mathfrak B ) $ is the sample space, $ G = \{ g \} $ is a group of one-to-one $ \mathfrak B $- measurable transformations of $ \mathfrak X $ onto itself and $ t ( x) $ is an invariant statistic, then $ t ( gx ) = t ( x) $ for all $ x \in \mathfrak X $ and $ g \in G $. Invariant statistics play an important role in the construction of invariant tests (cf. Invariant test; Invariance of a statistical procedure).

References[edit]

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)
[2] S. Zacks, "The theory of statistical inference" , Wiley (1971)
[3] G.P. Klimov, "Invariant inferences in statistics" , Moscow (1973) (In Russian)

How to Cite This Entry: Invariant statistic (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Invariant_statistic
14 views | Status: cached on November 17 2024 15:24:49
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF