Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Kähler form

From Encyclopedia of Mathematics - Reading time: 1 min


The fundamental form of a Kähler metric on a complex manifold. A Kähler form is a harmonic real differential form of type $ ( 1, 1) $. A differential form $ \omega $ on a complex manifold $ M $ is the Kähler form of a Kähler metric if and only if every point $ x \in M $ has a neighbourhood $ U $ in which

$$ \omega = \ i \partial \overline \partial \; p = i \sum \frac{\partial ^ {2} p }{\partial z _ \alpha \partial \overline{z}\; _ \beta } dz _ \alpha \wedge d \overline{z}\; _ \beta , $$

where $ p $ is a strictly plurisubharmonic function in $ U $ and $ z _ {1} \dots z _ {n} $ are complex local coordinates.

A Kähler form is called a Hodge form if it corresponds to a Hodge metric, i.e. if it has integral periods or, equivalently, defines an integral cohomology class.

References[edit]

[1] R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)

Comments[edit]

For fundamental form of a Kähler metric see Kähler metric.

References[edit]

[a1] A. Weil, "Introduction à l'Aeetude des variétés kahlériennes" , Hermann (1958)

How to Cite This Entry: Kähler form (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Kähler_form
4 views | Status: cached on October 05 2024 01:30:32
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF