Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Lieb-Thirring inequalities

From Encyclopedia of Mathematics - Reading time: 7 min

Inequalities concerning the negative eigenvalues of the Schrödinger operator (cf. also Schrödinger equation)

H=Δ+V(x)

on L2(Rn), n1. With e1e2<0 denoting the negative eigenvalue(s) of H (if any), the Lieb–Thirring inequalities state that for suitable γ0 and constants Lγ,n

(a1)j1|ej|γLγ,nRnV(x)γ+n/2dx

with V(x):=max{V(x),0}. When γ=0, the left-hand side is just the number of negative eigenvalues. Such an inequality (a1) can hold if and only if

(a2){γ12 for n=1,γ>0 for n=2,γ0 for n3.

The cases γ>1/2, n=1, γ>0, n2, were established by E.H. Lieb and W.E. Thirring [a14] in connection with their proof of stability of matter. The case γ=1/2, n=1, was established by T. Weidl [a16]. The case γ=0, n3, was established independently by M. Cwikel [a15], Lieb [a6] and G.V. Rosenbljum [a10] by different methods and is known as the CLR bound; the smallest known value (as of 1998) for L0,n is in [a6], [a7]. Closely associated with the inequality (a1) is the semi-classical approximation for |e|γ, which serves as a heuristic motivation for (a1). It is (cf. [a14]):

j1|ej|γ(2π)nRn×Rn[p2+V(x)]γdpdx=Lγ,ncRnV(x)γ+n/2dx,

with

Lγ,nc=2nπn/2Γ(γ+1)Γ(γ+1+n/2).

Indeed, Lγ,nc< for all γ0, whereas (a1) holds only for the range given in (a2). It is easy to prove (by considering V(x)=λW(x) with W smooth and λ) that

Lγ,nLγ,nc.

An interesting, and mostly open (1998) problem is to determine the sharp value of the constant Lγ,n, especially to find those cases in which Lγ,n=Lγ,nc. M. Aizenman and Lieb [a3] proved that the ratio Rγ,n=Lγ,n/Lγ,nc is a monotonically non-increasing function of γ. Thus, if RΓ,n=1 for some Γ, then Lγ,n=Lγ,nc for all γΓ. The equality L32,n=L32,nc was proved for n=1 in [a14] and for n>1 in [a2] by A. Laptev and Weidl. (See also [a1].)

The following sharp constants are known:

Lγ,n=Lγ,nc, all γ3/2, [a14], [a3], [a2];

L1/2,1=1/2, [a11].

There is strong support for the conjecture [a14] that

(a3)Lγ,1=1π(γ12)Γ(γ+1)Γ(γ+1/2)(γ12γ+12)γ+1/2

for 1/2<γ<3/2. Instead of considering all the negative eigenvalues as in (a1), one can consider just e1. Then for γ as in (a2),

|e1|γLγ,n1RnV(x)γ+n/2dx.

Clearly, Lγ,n1Lγ,n, but equality can hold, as in the cases γ=1/2 and 3/2 for n=1. Indeed, the conjecture in (a3) amounts to Lγ,11=Lγ,1 for 1/2<γ<3/2. The sharp value (a3) of Lγ,n1 is obtained by solving a differential equation [a14].

It has been conjectured that for n3, L0,n=L0,n1. In any case, B. Helffer and D. Robert [a12] showed that for all n and all γ<1, Lγ,n>Lγ,nc.

The sharp constant L0,n1, n3, is related to the sharp constant Sn in the Sobolev inequality

(a4)fL2(Rn)SnfL2n/(n2)(Rn)

by L0,n1=(Sn)n. By a "duality argument" [a14], the case γ=1 in (a1) can be converted into the following bound for the Laplace operator, Δ. This bound is referred to as a Lieb–Thirring kinetic energy inequality and its most important application is to the stability of matter [a8], [a14].

Let f1,f2, be any orthonormal sequence (finite or infinite, cf. also Orthonormal system) in L2(Rn) such that fjL2(Rn) for all j1. Associated with this sequence is a "density"

(a5)ρ(x)=j1|fj(x)|2.

Then, with Kn:=n(2/L1,n)2/n(n+2)12/n,

(a6)j1Rn|fj(x)|2dxKnRnρ(x)1+2/ndx.

This can be extended to anti-symmetric functions in L2(RnN). If Φ=Φ(x1,,xN) is such a function, one defines, for xRn, ρ(x)=NRn(N1)|Φ(x,x2,,xN)|2dx2dxN.

Then, if RnN|Φ|2=1, (a7)RnN|Φ|2KnRnρ(x)1+2/ndx.

Note that the choice Φ=(N!)1/2detfj(xk)|j,k=1N with fj orthonormal reduces the general case (a7) to (a6). If the conjecture L1,3=L1,3c is correct, then the bound in (a7) equals the Thomas–Fermi kinetic energy Ansatz (cf. Thomas–Fermi theory), and hence it is a challenge to prove this conjecture. In the meantime, see [a7], [a5] for the best available constants to date (1998).

Of course, (f)2=f(Δf). Inequalities of the type (a7) can be found for other powers of Δ than the first power. The first example of this kind, due to I. Daubechies [a13], and one of the most important physically, is to replace Δ by Δ in H. Then an inequality similar to (a1) holds with γ+n/2 replaced by γ+n (and with a different Lγ,n1, of course). Likewise there is an analogue of (a7) with 1+2/n replaced by 1+1/n.

All proofs of (a1) (except [a11] and [a16]) actually proceed by finding an upper bound to NE(V), the number of eigenvalues of H=Δ+V(x) that are below E. Then, for γ>0, |e|γ=γ0NE(V)Eγ1dE.

Assuming V=V (since V+ only raises the eigenvalues), NE(V) is most accessible via the positive semi-definite Birman–Schwinger kernel (cf. [a4]) KE(V)=V(Δ+E)1V.

e<0 is an eigenvalue of H if and only if 1 is an eigenvalue of K|e|(V). Furthermore, KE(V) is operator that is monotone decreasing in E, and hence NE(V) equals the number of eigenvalues of KE(V) that are greater than 1.

An important generalization of (a1) is to replace Δ in H by |i+A(x)|2, where A(x) is some arbitrary vector field in Rn (called a magnetic vector potential). Then (a1) still holds, but it is not known if the sharp value of Lγ,n changes. What is known is that all presently (1998) known values of Lγ,n are unchanged. It is also known that (Δ+E)1, as a kernel in Rn×Rn, is pointwise greater than the absolute value of the kernel (|i+A|2+E)1. There is another family of inequalities for orthonormal functions, which is closely related to (a1) and to the CLR bound [a9]. As before, let f1,,fN be N orthonormal functions in L2(Rn) and set

uj=(Δ+m2)1/2fj,

ρ(x)=j=1N|uj(x)|2.

uj is a Riesz potential (m=0) or a Bessel potential (m>0) of fj. If n=1 and m>0, then ρC0,1/2(Rn) and ρL(R)L/m. If n=2 and m>0, then for all 1p<, ρLp(R2)Bpm2/pN1/p. If n3, p=n/(n2) and m0 (including m=0), then ρLp(Rn)AnN1/p. Here, L, Bp, An are universal constants. Without the orthogonality, N1/p would have to be replaced by N.

Further generalizations are possible [a9].

References[edit]

[a1] R. Benguria, M. Loss, "A simple proof of a theorem of Laptev and Weidl" Preprint (1999)
[a2] A. Laptev, T. Weidl, "Sharp Lieb–Thirring inequalities in high dimensions" Acta Math. (in press 1999)
[a3] M.A. Aizenman, E.H. Lieb, "On semiclassical bounds for eigenvalues of Schrödinger operators" Phys. Lett. , 66A (1978) pp. 427–429
[a4] B. Simon, "Functional integration and quantum physics" , Pure Appl. Math. , 86 , Acad. Press (1979)
[a5] Ph. Blanchard, J. Stubbe, "Bound states for Schrödinger Hamiltonians: phase space methods and applications" Rev. Math. Phys. , 8 (1996) pp. 503–547
[a6] E.H. Lieb, "The numbers of bound states of one-body Schrödinger operators and the Weyl problem" , Geometry of the Laplace Operator (Honolulu, 1979) , Proc. Symp. Pure Math. , 36 , Amer. Math. Soc. (1980) pp. 241–251
[a7] E.H. Lieb, "On characteristic exponents in turbulence" Comm. Math. Phys. , 92 (1984) pp. 473–480
[a8] E.H. Lieb, "Kinetic energy bounds and their applications to the stability of matter" H. Holden (ed.) A. Jensen (ed.) , Schrödinger Operators (Proc. Nordic Summer School, 1988) , Lecture Notes Physics , 345 , Springer (1989) pp. 371–382
[a9] E.H. Lieb, "An Lp bound for the Riesz and Bessel potentials of orthonormal functions" J. Funct. Anal. , 51 (1983) pp. 159–165
[a10] G.V. Rosenbljum, "Distribution of the discrete spectrum of singular differential operators" Dokl. Akad. Nauk SSSR , 202 (1972) pp. 1012–1015 ((The details are given in: Izv. Vyss. Uchebn. Zaved. Mat. 164 (1976), 75-86 (English transl.: Soviet Math. (Izv. VUZ) 20 (1976), 63-71)))
[a11] D. Hundertmark, E.H. Lieb, L.E. Thomas, "A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator" Adv. Theor. Math. Phys. , 2 (1998) pp. 719–731
[a12] B. Helffer, D. Robert, "Riesz means of bound states and semi-classical limit connected with a Lieb–Thirring conjecture, II" Ann. Inst. H. Poincaré Phys. Th. , 53 (1990) pp. 139–147
[a13] I. Daubechies, "An uncertainty principle for fermions with generalized kinetic energy" Comm. Math. Phys. , 90 (1983) pp. 511–520
[a14] E.H. Lieb, W. Thirring, "Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities" E. Lieb (ed.) B. Simon (ed.) A. Wightman (ed.) , Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann , Princeton Univ. Press (1976) pp. 269–303 ((See also: W. Thirring (ed.), The stability of matter: from the atoms to stars, Selecta of E.H. Lieb, Springer, 1977))
[a15] M. Cwikel, "Weak type estimates for singular values and the number of bound states of Schrödinger operators" Ann. Math. , 106 (1977) pp. 93–100
[a16] T. Weidl, "On the Lieb–Thirring constants Lγ,1 for γ1/2" Comm. Math. Phys. , 178 : 1 (1996) pp. 135–146

Elliott H. Lieb

Copyright to this article is held by Elliott Lieb.


How to Cite This Entry: Lieb-Thirring inequalities (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Lieb-Thirring_inequalities
18 views |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF