The polynomial $ R _ {m, \nu } ( z) $
of degree $ m $
in $ z ^ {-} 1 $
which for $ m = 0 , 1 ,\dots $
and any $ \nu $
is defined by
$$ R _ {m , \nu } ( z) = $$
$$ = \ \frac{\pi z }{2 \sin \nu \pi } [ J _ {\nu + m } ( z) J _ { - \nu + 1 } ( z) + (- 1) ^ {m} J _ {- \nu - m } ( z) J _ {\nu - 1 } ( z)] $$
or
$$ R _ {m , \nu } ( z) = \frac{\Gamma ( \nu + m ) }{\Gamma ( \nu ) } \left ( \frac{2}{z} \right ) ^ {m} \times $$
$$ \times {} _ {2} F _ {3} \left ( 1- \frac{m}{2} , - \frac{m}{2} ; \nu , - m , 1 - \nu - m ; - z ^ {2} \right ) . $$
Here $ J _ \mu ( z) $ is the Bessel function (cf. Bessel functions) and $ {} _ {2} F _ {3} $ is the hypergeometric series. The Lommel polynomials satisfy the relations
$$ J _ {\nu + m } ( z) = J _ \nu ( z) R _ {m , \nu } ( z) - J _ {\nu - 1 } ( z) R _ {m- 1 , \nu + 1 } ( z) , $$
$$ R _ {0 , \nu } ( z) = 1 ,\ m = 1 , 2 ,\dots . $$
[1] | W. Magnus, F. Oberhettinger, R.P. Soni, "Formulas and theorems for the special functions of mathematical physics" , Springer (1966) |