Equations which describe mathematical models of physical phenomena. The equations of mathematical physics are part of the subject of mathematical physics. Numerous phenomena of physics and mechanics (hydro- and gas-dynamics, elasticity, electro-dynamics, optics, transport theory, plasma physics, quantum mechanics, gravitation theory, etc.) can be described by boundary value problems for differential equations. A very wide class of models is reducible to such boundary value problems.
A complete description of the evolution of physical processes requires, first, the specification of the state of the process at some fixed moment of time (the initial conditions) and, secondly, the specification of the state on the boundary of the medium in which the process considered occurs (the boundary conditions). The initial and boundary conditions form the boundary value conditions, and the differential equations together with corresponding boundary value conditions define a boundary value problem of mathematical physics.
Below some examples of equations and corresponding boundary value problems are given.
The equation of oscillations
describes the small vibrations of strings, membranes, and acoustic and electromagnetic oscillations. In (1) the space variables
For
where
The diffusion equation
describes processes of particle diffusion and heat transport in media. Equation (3) is a parabolic partial differential equation. For
For stationary processes, in which there is no dependence on the time
This is an elliptic partial differential equation. For
and for
Equations (6) and (7) are satisfied by various kinds of potentials: The Coulomb (Newton) potential, the potentials of the flows of incompressible fluids, etc.
If in the wave equation (2) the external perturbation
then the amplitude
satisfies the Helmholtz equation
One is led to the Helmholtz equation by considering a scattering (diffraction) problem.
For a complete description of the oscillatory process it is necessary to give the initial perturbation and the initial velocity:
In the case of a diffusion process it suffices to give the initial perturbation
Moreover, on the boundary
where
Thus, for a string the condition
means that the end
means that the end
means that on the boundary
prescribes the heat flow across
whereas in the plane
For the Helmholtz equation (8) one imposes at infinity the Sommerfeld radiation condition (cf. Radiation conditions)
the sign "-" (respectively, "+" ) corresponds to outgoing (respectively, incident) waves.
A boundary value problem that involves only initial conditions (and hence does not contain boundary conditions, so that
If a boundary value problem involves both initial and boundary conditions, then it is called a mixed problem. For equation (1) the mixed problem (1), (9), (11) is posed as follows: To find a function
which satisfies equation (1) in the cylinder
For the stationary equation (5) there are no initial conditions and the corresponding boundary value problem is posed as follows: To find a function
on the boundary
is called the Dirichlet problem, and with boundary condition
— the Neumann problem. One distinguishes the exterior and the interior Dirichlet and Neumann problems. For the exterior problems the boundary conditions must be supplemented by conditions at infinity of the type (14), (15) or (16).
The following eigen value problems are also regarded as boundary value problems for equation (5): To find the values of the parameter
has non-trivial solutions (eigen functions) that satisfy the homogeneous boundary condition
If
The formulation of the boundary value problems discussed above assumes that the solutions are sufficiently regular in the interior of the region as well as up to the boundary. Such formulations of boundary value problems are termed classical. However, in many problems of physical interest one must relinquish such regularity requirements. Inside the region the solution may be a generalized function and satisfy the equation in the sense of generalized functions, while the boundary value conditions may be fulfilled in some generalized sense (almost everywhere, in
Here the initial perturbations
that vanishes for
Since the boundary value problems of mathematical physics describe real physical processes, they must meet the following natural requirements, formulated by J. Hadamard:
1) a solution must exist in some class of functions
2) the solution must be unique in, possibly, another class of functions
3) the solution must depend continuously on the data of the problem (the initial and boundary conditions, the free terms, the coefficients of the equation, etc.). This requirement is imposed in connection with the fact that, as a rule, the data of physical problems are determined experimentally only approximately, and hence it is necessary to be sure that the solution of the problem does not depend essentially on the measurement errors of these data.
A problem that meets the requirements 1)–3) is called well-posed, and the set of functions
Finding well-posed boundary value problems of mathematical physics and methods for constructing their (exact or approximate) solutions is one of the main objectives of a branch of mathematical physics. It is known that all boundary value problems listed above are well-posed.
Example. The Cauchy problem
A problem that does not satisfy at least one of the conditions 1)–3) is called an ill-posed problem (cf. Ill-posed problems). The importance of ill-posed problems in contemporary mathematical physics is increasing: in this class fall, in the first place, inverse problems, and also problems connected with the treatment and interpretation of results of observations.
An example of an ill-posed problem is the following Cauchy problem for the Laplace equation (Hadamard's example):
For
whereas
In order to solve approximately ill-posed problems one can resort to a regularization method, which utilizes supplementary information on the solution and which amounts to solving a sequence of well-posed problems.
An important role in the equations of mathematical physics is played by the notion of a Green function. The Green function of a linear differential operator
with given (homogeneous) boundary value conditions on the boundary of the domain of variation of the variables
In physical situations the Green function
The existence of a fundamental solution in the spaces
Examples of fundamental solutions. For the wave equation:
where
For the heat equation:
For the Laplace equation:
Using the fundamental solution
with arbitrary right-hand side
The meaning of formula (22) in physical situations is as follows: The solution
In particular, the solution of the generalized Cauchy problem for the wave equation (or heat equation) is given by the wave (heat) potential
From this formula one can derive, under suitable assumptions on the smoothness of the source
the classical formulas for the solution of the Cauchy problem. For the wave equation in three-dimensional space one has the Kirchhoff formula
For the heat equation one has the Poisson formula
In the same manner, constructing the Green function for the Laplace equation for the sphere, one obtains the solution of the interior Dirichlet problem for the (three-dimensional) ball
For the investigation and approximate solution of mixed problems one uses, under the assumption that the coefficients in the equation and in the boundary conditions do not depend on the time
Then, upon substituting formally these series in equation (3) one obtains for the unknown functions
To ensure that the series (26) for
Solving the Cauchy problem (27), (28) one obtains a formal solution of the problem (3), (10), (18) in the form of a series:
There arises the problem of substantiating the Fourier method, i.e. of determining when the formal series (29) yields a classical or generalized solution of the problem (3), (10), (18).
To substantiate the Fourier method, and, generally, for establishing the well posedness of the mixed problem for the diffusion equation (3), one resorts to the maximum principle. An analogue of the Fourier method is also used for the mixed problem (1), (9), (18) for the oscillation equation. In this case the method of the energy integral is found useful.
The method of separation of variables has also found use in solving boundary value problems for elliptic-type equations (5), in particular, for calculating the eigen functions and eigen values under the assumption that the domain
For the investigation and approximate solution of boundary value problems for equation (5) one widely uses variational methods. For example, in the eigen value problems (17), (18) (for
where it is assumed that comparison functions
When investigating boundary value problems for equation (5) (in particular, for harmonic functions) one applies the maximum principle.
The boundary value problems listed above do not exhaust the whole variety of boundary value problems of mathematical physics; they merely provide the simplest classical examples. The boundary value problems describing real physical processes may be very complicated: systems of equations, equations of higher order, or non-linear equations. Here the main examples are the Schrödinger equation, the equations of hydrodynamics, transport, and magneto-hydrodynamics, Maxwell's equation (cf. Maxwell equations), the equations of elasticity theory, the Dirac, Hilbert, Einstein, and Yang–Mills equations, etc. (cf. also Dirac equation; Einstein equations; Yang–Mills field).
In connection with the search for non-trivial models describing the interaction of quantum fields, there is an interest in classical non-linear equations, among them the Korteweg–de Vries equation
the non-linear wave equation
(known as the Liouville equation for
A characteristic feature of such equations is that they admit solutions of "solitary-wave" type (solitons, cf. Soliton). Thus, for equation (31) such a solution is
This solution has finite energy.
[1] | A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
[2] | V.S. Vladimirov, "Equations of mathematical physics" , MIR (1984) (Translated from Russian) |
[3] | A.N. Tikhonov, V.I. [V.I. Arsenin] Arsenine, "Solution of ill-posed problems" , Winston (1977) (Translated from Russian) |
[4] | L.V. Hörmander, "The analysis of linear partial differential operators" , 1–2 , Springer (1983) |
[5] | J. Hadamard, "Lectures on Cauchy's problem in linear partial differential equations" , Dover, reprint (1952) |
[6] | G.B. Whitham, "Linear and non-linear waves" , Wiley (1974) |
[7] | V.P. Mikhailov, "Partial differential equations" , Moscow (1983) (In Russian) |
[8] | O.A. Ladyzhenskaya, "The boundary value problems of mathematical physics" , Springer (1985) (Translated from Russian) |
[9] | R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German) |
[10] | V.S. Vladimirov, "Generalized functions in mathematical physics" , MIR (1979) (Translated from Russian) |
[a1] | S.L. Sobolev, "Partial differential equations of mathematical physics" , Pergamon (1964) (Translated from Russian) |
[a2] | B.M. Budal, A.A. Samarskii, A.N. Tikhonov, "A collection of problems on mathematical physics" , Pergamon (1964) (Translated from Russian) |
[a3] | S.G. [S.G. Mikhlin] Michlin, "Lehrgang der mathematischen Physik" , Akademie Verlag (1972) (Translated from Russian) |
[a4] | P.M. Morse, H. Feshbach, "Methods of theoretical physics" , 1–2 , McGraw-Hill (1953) |
[a5] | E. Zauderer, "Partial differential equations of applied mathematics" , Wiley (1983) |