2020 Mathematics Subject Classification: Primary: 08-XX [MSN][ZBL]
A set with a ternary operation $\langle x,y,z \rangle$ satisfying a set of axioms which generalise the notion of median, or majority vote, as a Boolean function.
The axioms are
The second and third axioms imply commutativity: it is possible (but not easy) to show that in the presence of the other three, axiom (3) is redundant. The fourth axiom implies associativity. There are other possible axiom systems: for example the two
also suffice.
In a Boolean algebra the median function $\langle x,y,z \rangle = (x \vee y) \wedge (y \vee z) \wedge (z \vee x)$ satisfies these axioms, so that every Boolean algebra is a median algebra.
Birkhoff and Kiss showed that a median algebra with elements 0 and 1 satisfying $\langle 0,x,1 \rangle = x$ is a distributive lattice.