Let
is called the polynomially convex hull of
An up-to-date (as of 1998) text dealing with polynomial convexity is [a3], while [a13] and [a27] contain some sections on polynomial convexity, background and older results. The paper [a24] is an early study on polynomial convexity.
Polynomial convexity arises naturally in the context of function algebras (cf. also Algebra of functions): Let via
Moreover, if
By the Riesz representation theorem (cf. Riesz theorem) there exists for every
One calls
It can be shown that for each
For compact sets by "filling in the holes" of
Early results on polynomial convexity, cf. [a13], are
Oka's theorem: If
Browder's theorem: If
Here,
Forstnerič' theorem: Let
and
Here,
One method to find is by means of analytic discs. Let
Now, let has analytic structure at
.
It was a major question whether obtained by glueing discs to
See [a1] for the complete formulation. Alexander's result is an extension of pioneering work of J. Wermer, cf. [a30], E. Bishop and, later, G. Stolzenberg [a26], who dealt with real-analytic, respectively
F.R. Harvey and H.B. Lawson gave a generalization to higher-dimensional
Let
Another positive result is contained in the work of E. Bedford and W. Klingenberg, cf. [a4]: Suppose
The work of Bedford and Klingenberg has been generalized in various directions in [a16], [a21] and [a7]. One ingredient of this theorem is work of Bishop [a5], which gives conditions that guarantee locally the existence of analytic discs with boundary in real submanifolds of sufficiently high dimension. See [a11], [a32] and [a15] for results along this line.
A third situation that is fairly well understood is when
In this case the following is true: Let
Of course, it is possible that
Despite these positive results, in general has analytic structure everywhere if
is obtained by glueing discs to
However, it has been shown that in a weaker sense there is always a kind of analytic structure in polynomial hulls. Let
1)
2) There exists a sequence of analytic discs
This was proved in [a6]; [a8] and [a20] contain more information about additional nice properties that can be required from the sequence of analytic discs. Under suitable regularity conditions on consists of analytic discs
Another problem is to describe
See [a17] for a variation on this theme. One can deal with some situations where the manifold is replaced by a union of manifolds; e.g., B.M. Weinstock [a28] gives necessary and sufficient conditions for any compact subset of the union of two totally real
[a1] | H. Alexander, "Polynomial approximation and hulls in sets of finite linear measure in |
[a2] | H. Alexander, J. Wermer, "Polynomial hulls with convex fibres" Math. Ann. , 281 (1988) pp. 13–22 |
[a3] | H. Alexander, J. Wermer, "Several complex variables and Banach algebras" , Springer (1998) MR1482798 Zbl 0894.46037 |
[a4] | E. Bedford, W. Klingenberg Jr., "On the envelope of holomorphy of a |
[a5] | E. Bishop, "Differentiable manifolds in Euclidean space" Duke Math. J. , 32 (1965) pp. 1–21 MR200476 Zbl 0154.08501 |
[a6] | S. Bu, W. Schachermayer, "Approximation of Jensen measures by image measures under holomorphic functions and applications" Trans. Amer. Math. Soc. , 331 (1992) pp. 585–608 MR1035999 Zbl 0758.46014 |
[a7] | E.M. Chirka, N.V. Shcherbina, "Pseudoconvexity of rigid domains and foliations of hulls of graphs" Ann. Scuola Norm. Sup. Pisa , 22 (1995) pp. 707–735 MR1375316 Zbl 0868.32020 |
[a8] | J. Duval, N. Sibony, "Polynomial convexity, rational convexity and currents" Duke Math. J. , 79 (1995) pp. 487–513 MR1344768 Zbl 0838.32006 |
[a9] | F. Forstnerič, "Complements of Runge domains and holomorphic hulls" Michigan Math. J. , 41 (1994) pp. 297–308 MR1278436 Zbl 0811.32007 |
[a10] | F. Forstnerič, "Polynomial hulls of sets fibered over the circle" Indiana Univ. Math. J. , 37 (1988) pp. 869–889 MR0982834 Zbl 0647.32017 |
[a11] | F. Forstnerič, E.L. Stout, "A new class of polynomially convex sets" Ark. Mat. , 29 (1991) pp. 51–62 MR1115074 Zbl 0734.32006 |
[a12] | F.R. Harvey, H.B. Lawson Jr., "On boundaries of complex analytic varieties I" Ann. of Math. , 102 (1975) pp. 223–290 MR0425173 Zbl 0317.32017 |
[a13] | L. Hörmander, "An introduction to complex analysis in several variables" , North-Holland (1973) MR0344507 Zbl 0271.32001 |
[a14] | L. Hörmander, J. Wermer, "Uniform approximation on compact sets in |
[a15] | B. Jöricke, "Local polynomial hulls of discs near isolated parabolic points" Indiana Univ. Math. J. , 46 : 3 (1997) pp. 789–826 MR1488338 Zbl 0901.32010 |
[a16] | N.G. Kruzhilin, "Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in |
[a17] | A.G. O'Farrell, K.J. Preskenis, D. Walsh, "Holomorphic approximation in Lipschitz norms" , Proc. Conf. Banach Algebras and Several Complex Variables (New Haven, Conn., 1983) , Contemp. Math. , 32 (1983) pp. 187–194 MR0769507 Zbl 0553.32015 |
[a18] | P.J. de Paepe, "Approximation on a disk I" Math. Z. , 212 (1993) pp. 145–152 Zbl 0789.30027 |
[a19] | E.A. Poletsky, "Holomorphic currents" Indiana Univ. Math. J. , 42 (1993) pp. 85–144 MR1218708 Zbl 0811.32010 |
[a20] | E.A. Poletsky, "Analytic geometry on compacta in |
[a21] | N. Shcherbina, "On the polynomial hull of a graph" Indiana Univ. Math. J. , 42 (1993) pp. 477–503 MR1237056 Zbl 0798.32026 |
[a22] | Z. Slodkowski, "Polynomial hulls with convex convex sections and interpolating spaces" Proc. Amer. Math. Soc. , 96 (1986) pp. 255–260 MR818455 Zbl 0588.32017 |
[a23] | Z. Slodkowski, "Polynomial hulls in |
[a24] | G. Stolzenberg, "Polynomially and rationally convex sets" Acta Math. , 109 (1963) pp. 259–289 MR0146407 Zbl 0122.08404 |
[a25] | G. Stolzenberg, "A hull with no analytic structure" J. Math. Mech. , 12 (1963) pp. 103–112 MR0143061 Zbl 0113.29101 |
[a26] | G. Stolzenberg, "Uniform approximation on smooth curves" Acta Math. , 115 (1966) pp. 185–198 MR0192080 Zbl 0143.30005 |
[a27] | E.L. Stout, "The theory of uniform algebras" , Bogden and Quigley (1971) MR0423083 Zbl 0286.46049 |
[a28] | B.M. Weinstock, "On the polynomial convexity of the union of two maximal totally real subspaces of |
[a29] | J. Wermer, "Polynomial approximation on an arc in |
[a30] | J. Wermer, "The hull of a curve in |
[a31] | J. Wermer, "On an example of Stolzenberg" , Symp. Several Complex Variables, Park City, Utah , Lecture Notes in Mathematics , 184 , Springer (1970) MR0298428 |
[a32] | J. Wiegerinck, "Local polynomially convex hulls at degenerated CR singularities of surfaces in |