Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Potential

From Encyclopedia of Mathematics - Reading time: 1 min

potential function

A characteristic of a vector field.

A scalar potential is a scalar function v(M) such that a(M)=gradv(M) at every point of the domain of definition of the field a (sometimes, for example in physics, its negative is called a potential). If such a function exists, the vector field is called a potential field.

A vector potential is a vector function A(M) such that a(M)=curlA(M) (cf. Curl) at every point of the domain of definition of the field a. If such a function exists, the vector field A(M) is called a solenoidal field.

Depending on the distribution of the mass or the charge by which the potential is generated one speaks about a potential of a point-charge, a surface potential (single-layer or double-layer), a volume potential, etc. (see Potential theory).


Comments[edit]

See also Double-layer potential; Logarithmic potential; Multi-field potential; Newton potential; Non-linear potential; Riesz potential.

The use of a vector potential is restricted to three-dimensional vector fields. In this case one can prove the so-called Clebsch lemma, according to which any vector field can be represented as a sum of a potential field and a solenoidal field, a=gradv+curlA.


How to Cite This Entry: Potential (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Potential
24 views |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF