Privalov parameters
Operators that allow one to express the condition of harmonicity of a function without using partial derivatives (cf. Harmonic function). Let $ u $ be a locally integrable function in a bounded domain $ D $ of a Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $; let $ \omega ( h) $ denote the volume of the ball $ B ( x; h) $ of radius $ h $ with centre $ x \in D $, lying in $ D $; and let
$$ \Delta _ {h} u ( x) = \ { \frac{1}{\omega ( h) } } \int\limits _ {B ( x; h) } u ( y) dy - u ( x). $$
The upper and lower Privalov operators $ \overline \Delta \; {} ^ {*} u ( x) $ and $ \underline \Delta ^ {*} u ( x) $ are defined, respectively, by the formulas
$$ \overline \Delta \; {} ^ {*} u ( x) = \ \overline{\lim\limits}\; _ {h \rightarrow 0 } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) , $$
$$ \underline \Delta ^ {*} u ( x) = \lim\limits _ {\overline{ {h \rightarrow 0 }}\; } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) . $$
If the upper and lower Privalov operators coincide, then the Privalov operator $ \Delta ^ {*} u ( x) $ is defined by
$$ \Delta ^ {*} u ( x) = \ \overline \Delta \; {} ^ {*} u ( x) = \ \underline \Delta ^ {*} u ( x) = \ \lim\limits _ {h \rightarrow 0 } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) . $$
If the function $ u $ has continuous partial derivatives up to and including the second order at $ x \in D $, then the Privalov operator $ \Delta ^ {*} u( x) $ exists at $ x $ and is equal to the value of the Laplace operator: $ \Delta ^ {*} u ( x) = \Delta u ( x) $. Privalov's theorem says: If a function $ u $, continuous in a domain $ D $, satisfies everywhere in $ D $ the conditions
$$ \underline \Delta ^ {*} u ( x) \leq \ 0 \leq \overline \Delta \; {} ^ {*} u ( x), $$
then $ u $ is harmonic in $ D $. This implies that a function $ u $, continuous in $ D $, is harmonic if and only if at every point $ x \in D $ one has $ \Delta _ {h} u ( x) = 0 $, from some sufficiently small $ h $ onwards, or, in other words, if and only if
$$ u ( x) = \ { \frac{1}{\omega ( h) } } \int\limits _ {B ( x; h) } u ( y) dy. $$
The average value over the volume of a sphere can be replaced by that over the surface area.
[1] | I.I. Privalov, Mat. Sb. , 32 (1925) pp. 464–471 |
[2] | I.I. Privalov, "Subharmonic functions" , Moscow-Leningrad (1937) (In Russian) |
[3] | M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1969) |
More generally, if $ u > - \infty $ is lower semi-continuous, then $ u $ is hyperharmonic if and only if $ \underline \Delta ^ {*} u \leq 0 $ on $ \{ u < \infty \} $( the theorem of Blaschke–Privalov).
Similar results hold if the average value over the surface area is used for the operators and $ 2( n+ 2) $ is replaced by $ 2n $.