of a group
A homomorphism of this group into the group
With each projective representation
where
which is the associated central extension. Every section
where
Projective representations arise naturally in studying linear representations of group extensions. The most important examples of projective representations are: the spinor representation of an orthogonal group and the Weyl representation of a symplectic group. The definitions of equivalence and irreducibility of representations carry over directly to projective representations. The classification of the irreducible projective representations of finite groups was obtained by I. Schur (1904).
A projective representation is said to be unitary if
[1] | A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian) |
[2] | C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) |
[3] | G.W. Mackey, "Unitary representations of group extensions, I" Acta Math. , 99 (1958) pp. 265–311 |
[4] | V. Bargmann, "Irreducible unitary representations of the Lorentz group" Ann. of Math. , 48 (1947) pp. 568–640 |
[a1] | C.W. Curtis, I. Reiner, "Methods of representation theory" , 1–2 , Wiley (Interscience) (1981–1987) |
[a2] | I.M. Isaacs, "Character theory of finite groups" , Acad. Press (1976) |