Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Repeated series

From Encyclopedia of Mathematics - Reading time: 1 min

A series whose terms are also series:

$$\sum_{n=1}^\infty\left(\sum_{m=1}^\infty u_{mn}\right).\label{1}\tag{1}$$

The series \eqref{1} is said to be convergent if for any fixed $n$ the series

$$\sum_{m=1}^\infty u_{mn}=a_n$$

converges and if also the series

$$\sum_{n=1}^\infty a_n$$

converges. The sum of the latter is also called the sum of the repeated series \eqref{1}. The sum

$$s=\sum_{n=1}^\infty a_n=\sum_{n=1}^\infty\left(\sum_{m=1}^\infty u_{mn}\right)$$

of the repeated series \eqref{1} is the repeated limit of the partial sums

$$s_{mn}=\sum_{k=1}^n\sum_{l=1}^mu_{kl},$$

i.e.

$$s=\lim_{n\to\infty}\lim_{m\to\infty}s_{mn}.$$

If the double series

$$\sum_{m,n=1}^\infty u_{mn}$$

converges and the series

$$\sum_{m=1}^\infty u_{mn}$$

converges, then the repeated series \eqref{1} converges and it has the same sum as the double series . The condition of this theorem is fulfilled, in particular, if the double series converges absolutely.

References[edit]

[a1] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) Zbl 0124.28302 (English translation: Blackie, 1951 & Dover, reprint, 1990)

How to Cite This Entry: Repeated series (Encyclopedia of Mathematics) | Licensed under CC BY-SA 3.0. Source: https://encyclopediaofmath.org/wiki/Repeated_series
5 views | Status: cached on July 16 2024 06:27:25
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF