The logarithm,
on the set
(if
A generalization of this theorem to linear operators is (see [3]): Let
and where the norm
The Riesz convexity theorem is at the origin of a whole trend of analysis in which one studies interpolation properties of linear operators. Among the first generalizations of the Riesz convexity theorem is the Marcinkiewicz interpolation theorem [5], which ensures for
[1] | M. Riesz, "Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires" Acta Math. , 49 (1926) pp. 465–497 |
[2] | G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934) |
[3] | G.O. Thorin, "An extension of a convexity theorem due to M. Riesz" K. Fysiogr. Saallskap. i Lund Forh. , 8 : 14 (1936) |
[4] | E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971) |
[5] | J. Marcinkiewicz, "Sur l'interpolation d'opérateurs" C.R. Acad. Sci. Paris , 208 (1939) pp. 1272–1273 |
[6] | S.K. Krein, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian) |
[7] | H. Triebel, "Interpolation theory" , Springer (1978) |