Given an open subset $ \Omega $
of $ \mathbf R ^ {3} $
with smooth boundary $ \partial \Omega $
and $ f $
an $ L _ {2} ( \Omega ) $
function, the Signorini problem consists in finding a function $ u $
on $ \Omega $
that is a solution to the following boundary value problem:
$$ Au = f \textrm{ in } \Omega ; $$
$$ u \geq 0, { \frac{\partial u }{\partial \nu } } \geq 0, u { \frac{\partial u }{\partial \nu } } = 0 \textrm{ on } \partial \Omega. $$
Here, $ A $ is a second-order linear and symmetric elliptic operator on $ \Omega $( in particular, $ A $ can be equal to $ \Delta $, the Laplace operator) and $ \partial / {\partial \nu } $ is the outward normal derivative to $ \Omega $ corresponding to $ A $. This problem, introduced by A. Signorini [a5] and studied first by G. Fichera [a3], describes the mathematical model for the deformation of an elastic body whose boundary is in unilateral contact with another elastic body (the static case). In this case $ u = u ( x ) $ is the field of displacements and $ {\partial u } / {\partial \nu } $ is the normal stress (see [a2]). In the Signorini problem, the boundary conditions can be equivalently expressed as:
$$ { \frac{\partial u }{\partial \nu } } ,u \geq 0 \textrm{ on } \partial \Omega; $$
$$ u = 0 \textrm{ on } \Gamma, $$
$$ { \frac{\partial u }{\partial \nu } } = 0 \textrm{ on } \partial \Omega \setminus \Gamma, $$
where $ \Gamma $ is an unknown part of $ \partial \Omega $. Thus, the Signorini problem can be viewed as a problem with free boundary, and a weak formulation of the problem is given by the variational inequality [a4]:
$$ u \in K ; $$
$$ a ( u,u - v ) \geq \int\limits _ \Omega f ( u - v ) dx, \forall v \in K \setminus 0, $$
where $ a $ is the Dirichlet bilinear form associated to $ A $ and $ K = \{ {u \in H ^ {1} ( \Omega ) } : {u \geq 0 \textrm{ on } \partial \Omega } \} $. Here, $ H ^ {1} ( \Omega ) $ is the usual Sobolev space on $ \Omega $. In this way the existence and uniqueness of a weak solution to the Signorini problem follows from the general theory of elliptic variational inequalities (see [a1], [a4]).
[a1] | H. Brezis, "Inéquations variationelles" J. Math. Pures Appl. , 51 (1972) pp. 1–168 |
[a2] | G. Duvaut, J.L. Lions, "Inequalities in mechanics and physics" , Springer (1976) |
[a3] | G. Fichera, "Problemi elastostatici con vincoli unilaterali e il problema di Signorini con ambigue condizioni al contorno" Memoirs Acad. Naz. Lincei , 8 (1964) pp. 91–140 |
[a4] | J.L. Lions, G. Stampacchia, "Variational inequalities" Comm. Pure Appl. Math. , XX (1967) pp. 493–519 |
[a5] | A. Signorini, "Questioni di elastostatica linearizzata e semilinearizzata" Rend. Mat. Appl. , XVIII (1959) |