A non-parametric test for the homogeneity of two samples $ Y _ {1} \dots Y _ {n} $
and $ Z _ {1} \dots Z _ {m} $,
based on the rank statistic
$$ X = \sum _ {i = 1 } ^ { m } \Psi \left ( \frac{s ( r _ {i} ) }{m + n + 1 } \right ) , $$
where $ r _ {i} $ are the ranks (ordinal numbers) of the random variables $ Z _ {i} $ in the series of joint order statistics of $ Y _ {j} $ and $ Z _ {i} $; the function $ s( r) $ is defined by the pre-selected permutation
$$ \left ( \begin{array}{c} 1 \\ s ( 1) \end{array} \begin{array}{c} \dots \\ \dots \end{array} \begin{array}{c} ( m + n) \\ s ( m + n) \end{array} \right ) , $$
and $ \Psi ( p) $ is the inverse function of the normal distribution with parameters $ ( 0, 1) $. The permutation is so chosen that for a given alternative hypothesis the test will be the strongest. If $ m + n \rightarrow \infty $, irrespective of the behaviour of $ m $ and $ n $ individually, the asymptotic distribution of $ X $ is normal. If $ Y $ and $ Z $ are independent and normally distributed with equal variances, the test for the alternative choice $ {\mathsf P} ( Y < T) < {\mathsf P} ( Z < T) $ or $ {\mathsf P} ( Y \langle T) \rangle {\mathsf P} ( Z < T) $( in this case $ s( r) \equiv r $) is asymptotically equally as strong as the Student test. Introduced by B.L. van der Waerden [1].
[1] | B.L. van der Waerden, "Order tests for the two-sample problem and their power" Proc. Kon. Nederl. Akad. Wetensch. A , 55 (1952) pp. 453–458 |
[2] | B.L. van der Waerden, "Mathematische Statistik" , Springer (1957) |
[3] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
[a1] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986) |
[a2] | M.G. Kendall, A. Stuart, "The advanced theory of statistics" , 2. Inference and relationship , Griffin (1979) |