Weyl–Hörmander calculus
In Hamiltonian mechanics over a phase space
For a state
By comparison, in quantum mechanics over
The canonical commutation relations
hold for the commutator
In both classical and quantum mechanics, the position, momentum and constant observables span the Heisenberg Lie algebra
Here, one writes
The mapping
If
retrieves
Now suppose that
The Weyl functional calculus
The mapping
Under the Weyl calculus, the Poisson bracket is mapped to a constant times the commutator only for polynomials
In the theory of pseudo-differential operators, initiated by J.J. Kohn and L. Nirenberg [a16], one associates the symbol
so that if
The Weyl functional calculus can also be formulated in an abstract setting. Suppose that
is defined for every
The operators
By the Paley–Wiener–Schwartz theorem, the Weyl functional calculus
for all
The Weyl calculus in this setting has been developed by R.F.V. Anderson [a1], [a2], [a3], E. Nelson [a20], and E. Albrecht [a6]. The last two authors provide the connection with the heuristic time-ordered operational calculus of R.P. Feynman [a10] developed in his study of quantum electrodynamics.
A combination of the Weyl and ordered functional calculi is studied in [a17] and [a19].
If the operators
For the case of bounded operators, the Weyl functional calculus
Given a
at time
[a1] | R.F.V. Anderson, "The Weyl functional calculus" J. Funct. Anal. , 4 (1969) pp. 240–267 MR0635128 Zbl 0191.13403 |
[a2] | R.F.V. Anderson, "On the Weyl functional calculus" J. Funct. Anal. , 6 (1970) pp. 110–115 MR0262857 Zbl 0196.14302 |
[a3] | R.F.V. Anderson, "The multiplicative Weyl functional calculus" J. Funct. Anal. , 9 (1972) pp. 423–440 MR0301541 Zbl 0239.47010 |
[a4] | M. Atiyah, R. Bott, L. Gårding, "Lacunas for hyperbolic differential operators with constant coefficients I" Acta Math. , 124 (1970) pp. 109–189 MR0470499 MR0470500 Zbl 0191.11203 |
[a5] | M. Atiyah, R. Bott, L. Gårding, "Lacunas for hyperbolic differential operators with constant coefficients II" Acta Math. , 131 (1973) pp. 145–206 MR0470499 MR0470500 Zbl 0266.35045 |
[a6] | E. Albrecht, "Several variable spectral theory in the non-commutative case" , Spectral Theory , Banach Centre Publ. , 8 , PWN (1982) pp. 9–30 MR738273 |
[a7] | J. Bazer, D.H.Y. Yen, "The Riemann matrix of |
[a8] | J. Bazer, D.H.Y. Yen, "Lacunas of the Riemann matrix of symmetric-hyperbolic systems in two space variables" Commun. Pure Appl. Math. , 22 (1969) pp. 279–333 MR0509838 Zbl 0167.10003 |
[a9] | G.B. Folland, "Harmonic analysis in phase space" , Princeton Univ. Press (1989) MR0983366 Zbl 0682.43001 |
[a10] | R.P. Feynman, "An operator calculus having applications in quantum electrodynamics" Phys. Rev. , 84 (1951) pp. 108–128 MR0044379 Zbl 0044.23304 |
[a11] | H.J. Groenewold, "On the principles of elementary quantum mechanics" Physica , 12 (1946) pp. 405–460 MR0018562 Zbl 0060.45002 |
[a12] | M.J. Gotay, H.B. Grundling, G.M. Tuynman, "Obstruction results in quantization theory" J. Nonlinear Sci. , 6 (1996) pp. 469–498 MR1411344 Zbl 0863.58030 |
[a13] | L. Hörmander, "The Weyl calculus of pseudodifferential operators" Commun. Pure Appl. Math. , 32 (1979) pp. 359–443 MR0517939 |
[a14] | L. Hörmander, "The analysis of linear partial differential operators" , III , Springer (1985) MR1540773 MR0781537 MR0781536 Zbl 0612.35001 Zbl 0601.35001 |
[a15] | B. Jefferies, A. McIntosh, "The Weyl calculus and Clifford analysis" Bull. Austral. Math. Soc. , 57 (1998) pp. 329–341 MR1617328 Zbl 0915.47015 |
[a16] | J.J. Kohn, L. Nirenberg, "An algebra of pseudodifferential operators" Commun. Pure Appl. Math. , 18 (1965) pp. 269–305 MR176362 |
[a17] | V.P. Maslov, "Operational methods" , Mir (1976) MR0512495 Zbl 0449.47002 |
[a18] | J.E. Moyal, "Quantum mechanics as a statistical theory" Proc. Cambridge Philos. Soc. , 45 (1949) pp. 99–124 MR0029330 Zbl 0031.33601 |
[a19] | V.E. Nazaikinskii, V.E. Shatalov, B.Yu. Sternin, "Methods of noncommutative analysis" , Studies Math. , 22 , W. de Gruyter (1996) MR1460489 Zbl 0876.47015 |
[a20] | E. Nelson, "A functional calculus for non-commuting operators" F.E. Browder (ed.) , Functional Analysis and Related Fields: Proc. Conf. in Honor of Professor Marshal Stone (Univ. Chicago, May (1968) , Springer (1970) pp. 172–187 MR0412857 Zbl 0239.47011 |
[a21] | I. Petrovsky, "On the diffusion of waves and lacunas for hyperbolic equations" Mat. Sb. , 17 (1945) pp. 289–368 (In Russian) |
[a22] | J.C.T. Pool, "Mathematical aspects of the Weyl correspondence" J. Math. Phys. , 7 (1966) pp. 66–76 MR0204049 Zbl 0139.45903 |
[a23] | M.E. Taylor, "Functions of several self-adjoint operators" Proc. Amer. Math. Soc. , 19 (1968) pp. 91–98 MR0220082 Zbl 0164.16604 |
[a24] | M.E. Taylor, "Pseudodifferential operators" , Princeton Univ. Press (1981) MR0618463 Zbl 0453.47026 |
[a25] | F. Treves, "Introduction to pseudodifferential and Fourier integral operators" , I , Plenum (1980) MR0597145 MR0597144 Zbl 0453.47027 |
[a26] | V.A. Vassiliev, "Ramified integrals, singularities and lacunas" , Kluwer Acad. Publ. (1995) MR1336145 Zbl 0935.32026 |
[a27] | H. Weyl, "The theory of groups and quantum mechanics" , Methuen (1931) (Reprint: Dover, 1950) MR0889677 Zbl 58.1374.01 |