High-resolution view of Dimorphos, created by combining the final 10 full-frame images obtained by DART's Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO). Dimorphos is oriented so that its north pole is toward the top of the image. Taken seconds before impact on September 26, 2022.
Dimorphos (formal designation (65803) Didymos I; provisional designationS/2003 (65803) 1) is a natural satellite or moon of the near-Earth asteroid65803 Didymos, with which it forms a binary system. The moon was discovered on 20 November 2003 by Petr Pravec in collaboration with other astronomers worldwide. Dimorphos has a diameter of 177 meters (581 ft) across its longest extent and it was the target of the Double Asteroid Redirection Test (DART), a NASA space mission that deliberately collided a spacecraft with the moon on 26 September 2022 to alter its orbit around Didymos. Before the impact by DART, Dimorphos had a shape of an oblate spheroid with a surface covered in boulders but virtually no craters.[16] The moon is thought to have formed when Didymos shed its mass due to its rapid rotation, which formed an orbiting ring of debris that conglomerated into a low-density rubble pile that became Dimorphos today.[17][18][19]
The DART impact reduced Dimorphos's orbital period around Didymos by 33 minutes and ejected over 1 million kilograms (2.2×10^6 lb) of debris into space, producing a dust plume that temporarily brightened the Didymos system and developed a 10,000-kilometer (6,200 mi)-long dust tail that persisted for several months.[20][21][22] The DART impact is predicted to have caused global resurfacing and deformation of Dimorphos's shape, leaving an impact crater several tens of meters in diameter.[23][15][24] Post-impact observations of brightness fluctuations within the Didymos system suggest that the impact may have either significantly deformed Dimorphos into an ellipsoidal shape or may have sent it into a chaoticallytumbling rotation.[7][25] If Dimorphos was in a tumbling rotation state, the moon will be subjected to irregular tidal forces by Didymos before it will eventually return to a tidally locked state within several decades.[14][26][27] The ESA mission Hera is planned to arrive at the Didymos system in 2026 to further study the effects of DART's impact on Dimorphos.
Radar images of Didymos and Dimorphos taken by the Arecibo Observatory in 2003
The primary asteroid Didymos was discovered in 1996 by Joe Montani of the Spacewatch Project at the University of Arizona.[1] The satellite Dimorphos was discovered on 20 November 2003, in photometric observations by Petr Pravec and colleagues at the Ondřejov Observatory in the Czech Republic. Dimorphos was detected through periodic dips in Didymos's brightness due to mutual eclipses and occultations. With his collaborators, he confirmed from the Arecibo radar delay-Doppler images that Didymos is a binary system.[28][13]
Etymology
The Working Group for Small Bodies Nomenclature of the International Astronomical Union (IAU) gave the satellite its official name on 23 June 2020.[29] The name Dimorphos is derived from a Greek word (Δίμορφος) meaning 'having two forms'.[30][31][lower-alpha 5] The justification for the new name reads: "As the target of the DART and Hera space missions, it will become the first celestial body in cosmic history whose form was substantially changed as a result of human intervention (the DART impact)".[2] Prior to the IAU naming, the nickname Didymoon was used in official communications.[32]
Exploration
On 24 November 2021, NASA and the Applied Physics Laboratory launched an impactor spacecraft towards Dimorphos as part of their Double Asteroid Redirection Test (DART).[33][34] DART was the first experiment conducted in space to test asteroid deflection as a method of defending Earth from potentially hazardous asteroids.[35] Following a ten-month journey to the Didymos system, the impactor collided with Dimorphos on 26 September 2022 at a speed of around 24,000 kilometers per hour (15,000 miles per hour).[35][36] The collision successfully decreased Dimorphos's orbital period around Didymos by 32±2 minutes.[37][29][38][39] Fifteen days prior to its collision, the impactor released LICIACube, a 6U CubeSat operated by the Italian Space Agency that photographed the impact and the resulting dust plume as it performed a close flyby of the Didymos system.[33][40][41][42] Spacecraft and observatories such as Hubble, James Webb, Lucy, SAAO and ATLAS also captured the dust plume trailing the Didymos system in the days following the impact.[43][44][45][22] As part of its Hera mission, ESA currently plans to launch three spacecraft to the Didymos system in 2024 to further study the aftermath of the impact.[38][46][47]
A trail of dust streams from Dimorphos in this Hubble Space Telescope photo taken about three months after the collision. The asteroid is surrounded by blue dots, which are boulders ranging from 1 to 6.7 metres across that were ejected by the impact.
The DART impact on the center of Dimorphos decreased the orbital period, previously 11.92 hours, by 33±1 minutes. This large change indicates the recoil from material excavated from the asteroid and ejected into space by the impact (known as ejecta) contributed significant momentum change to the asteroid, beyond that of the DART spacecraft itself. Researchers found the impact caused an instantaneous slowing in Dimorphos' speed along its orbit of about 2.7 millimeters per second — again indicating the recoil from ejecta played a major role in amplifying the momentum change directly imparted to the asteroid by the spacecraft. That momentum change was amplified by a factor of 2.2 to 4.9 (depending on the mass of Dimorphos), indicating the momentum change transferred because of ejecta production significantly exceeded the momentum change from the DART spacecraft alone.[48] While the orbital change was small, the change is in the velocity and over the course of years will accumulate to a large change in position.[49] For a hypothetical Earth-threatening body, even such a tiny change could be sufficient to mitigate or prevent an impact, if applied early enough. As the diameter of Earth is around 13,000 kilometers, a hypothetical asteroid impact could be avoided with as little of a shift as half of that (6,500 kilometers). A 2 cm/s velocity change accumulates to that distance in approximately 10 years.
Dart Impact seen by LICIACube
By smashing into the asteroid DART made Dimorphos an active asteroid. Scientists had proposed that some active asteroids are the result of impact events, but no one had ever observed the activation of an asteroid. The DART mission activated Dimorphos under precisely known and carefully observed impact conditions, enabling the detailed study of the formation of an active asteroid for the first time.[48][50] Observations show that Dimorphos lost approximately 1 million kilograms after the collision.[51] Impact produced a dust plume that temporarily brightened the Didymos system and developed a 10,000-kilometer (6,200 mi)-long dust tail that persisted for several months.[20][21][22] The DART impact is predicted to have caused global resurfacing and deformation of Dimorphos's shape, leaving an impact crater several tens of meters in diameter.[23][15][24] The impact has likely sent Dimorphos into a chaoticallytumbling rotation that will subject the moon to irregular tidal forces by Didymos before it will eventually return to a tidally locked state within several decades.[14][26][27]
Size and shape
Dimorphos is approximately 170 meters (560 ft) in diameter, compared to Didymos at 780 meters (2,560 ft). Dimorphos does not have a confirmed mass, but it is estimated to be about 5×109 kg (5.5 million tons), or about the same mass and size as the Great Pyramid of Giza, when assuming a density of 2.17 g/cm3 similar to Didymos.[52] It is one of the smallest celestial objects given a formal name by the IAU, after 367943 Duende and 469219 Kamoʻoalewa.[2]
The final few minutes of pictures from the DART mission revealed an egg-shaped body covered with boulders, suggesting it has a rubble pile structure.[53][54]
Surface
Five boulders (saxa) and six craters have been given names of traditional drums from several cultures. They are approximately 10 meters across or smaller:[55]
Left: Surface of Dimorphos, captured by DART two seconds before impact. Right: Composite map of Dimorphos with named features.
Orbit and rotation
Animation of DART around Didymos - Impact on Dimorphos DART· Didymos· Dimorphos
The primary body of the binary system, Didymos, orbits the Sun at a distance of 1.0 to 2.3 AU once every 770 days (2 years and 1 month). The pathway of the orbit has an eccentricity of 0.38 and an inclination of 3° with respect to the ecliptic. On 4 October 2022 Didymos made an Earth approach of 10.6 million km (6.6 million mi).[56] Dimorphos moves in a nearly equatorial, nearly circular orbit around Didymos, with an orbital period of 11.9 hours. Its orbit period is synchronous with its rotation, so that the same side of Dimorphos always faces Didymos. Dimorphos's orbit is retrograde relative to the ecliptic plane, in conformity with Didymos's retrograde rotation.[57]
Dimorphos's rotation is being slowed down by the YORP effect, with an estimated rotation period doubling time of 86,000 years. However, because it is in orbit around Didymos, tidal forces keep the moon locked in synchronous rotation.[58]
See also
354P/LINEAR – a main-belt asteroid that was naturally impacted by another asteroid sometime before 2010
P/2016 G1 (PanSTARRS) – another main-belt asteroid that was impacted by an asteroid in 2016
↑For a circular orbit with negligible eccentricity, as in the case of Dimorphos, the mean orbital speed can be approximated by the time T it takes to complete one revolution around its orbital circumference, with the radius being its semi-major axis a: [math]\displaystyle{ v = {2 \pi a \over T} }[/math].
↑Thomas et al. (2023) give Dimorphos's orbit pole orientation in terms of ecliptic coordinates, where λ is ecliptic longitude and β is ecliptic latitude.[4](pp28)β is the angular offset from the ecliptic plane, whereas inclination i with respect to the ecliptic is the angular offset of the orbital pole from the ecliptic north pole, at β = +90° ;i with respect to the ecliptic would be the complement of β.[9] Therefore, given β = –79.3° ,i = 90° – (–79.3°) = 169.3° from the ecliptic.
↑Absolute magnitude of Dimorphos calculated from the addition of its magnitude difference to Didymos's absolute magnitude: 18.07 + 3.29 ≈ 21.4.[1]
↑The name Dimorphos was suggested by planetary scientist Kleomenis Tsiganis at the Aristotle University of Thessaloniki. Tsiganis explained that the name "has been chosen in anticipation of its changes: It will be known to us in two very different forms, the one seen by DART before the impact, and the other seen by Hera a few years later."[2]
↑Fodde, Iosto; Feng, Jinglang; Vasile, Massimiliano; Gil-Fernández, Jesús; et al. (October 2023). "Design and Analysis of Robust Ballistic Landings on the Secondary of a Binary Asteroid". arXiv:2310.19844 [astro-ph.IM].
↑ 15.015.115.2Nakano, RyotaExpression error: Unrecognized word "etal". (July 2022). "NASA's Double Asteroid Redirection Test (DART): Mutual Orbital Period Change Due to Reshaping in the Near-Earth Binary Asteroid System (65803) Didymos". The Planetary Science Journal3 (7): 16. doi:10.3847/PSJ/ac7566. 148. Bibcode: 2022PSJ.....3..148N.
↑Zhang, YunExpression error: Unrecognized word "etal". (July 2021). "Creep stability of the DART/Hera mission target 65803 Didymos: II. The role of cohesion". Icarus362: 18. doi:10.1016/j.icarus.2021.114433. 114433. Bibcode: 2021Icar..36214433Z.
↑ 23.023.1Raducan, Sabina D.; Martin, Jutzi (July 2022). "Global-scale Reshaping and Resurfacing of Asteroids by Small-scale Impacts, with Applications to the DART and Hera Missions". The Planetary Science Journal3 (6): 15. doi:10.3847/PSJ/ac67a7. 128. Bibcode: 2022PSJ.....3..128R.
↑ 26.026.1Richardson, Derek C.Expression error: Unrecognized word "etal". (July 2022). "Predictions for the Dynamical States of the Didymos System before and after the Planned DART Impact". The Planetary Science Journal3 (7): 23. doi:10.3847/PSJ/ac76c9. 157. Bibcode: 2022PSJ.....3..157R.
↑Michel, Patrick et al. (1 July 2022). "The ESA Hera Mission: Detailed Characterization of the DART Impact Outcome and of the Binary Asteroid (65803) Didymos" (in en). The Planetary Science Journal3 (7): 160. doi:10.3847/psj/ac6f52. ISSN2632-3338. Bibcode: 2022PSJ.....3..160M.
↑Nakano, Ryota; Hirabayashi, Masatoshi; Agrusa, Harrison F.; Ferrari, Fabio; Meyer, Alex J.; Michel, Patrick; Raducan, Sabina D.; Sánchez, Paul et al. (2022-07-01). "NASA's Double Asteroid Redirection Test (DART): Mutual Orbital Period Change Due to Reshaping in the Near-Earth Binary Asteroid System (65803) Didymos". The Planetary Science Journal3 (7): 148. doi:10.3847/PSJ/ac7566. ISSN2632-3338. Bibcode: 2022PSJ.....3..148N.
↑Scheirich, P.; Pravec, P.; Jacobson, S.A.; Ďurech, J.; Kušnirák, P.; Hornoch, K. et al. (2015). "The binary near-Earth asteroid (175706) 1996 FG3 – an observational constraint on its orbital evolution". Icarus245: 56–63. doi:10.1016/j.icarus.2014.09.023. Bibcode: 2015Icar..245...56S.