Short description: Meteorites with high levels of primordial gases
Gas-rich meteorites are meteorites with high levels of primordial gases, such as helium, neon, argon, krypton, xenon and sometimes other elements.[1] Though these gases are present "in virtually all meteorites,"[2] the Fayetteville meteorite has ~2,000,000 x10−8ccSTP/g helium,[3] or ~2% helium by volume equivalent. In comparison, background level is a few ppm.
The identification of gas-rich meteorites is based on the presence of light noble gases in large amounts, at levels which cannot be explained without involving an additional component over and above the well-known noble gas components that are present in all meteorites.[3]
William Ramsay was the first to report helium in an iron meteorite, in 1895- not long after its first Earth sample, instead of via Solar observation.[4]
The use of decay products to date meteorites was suggested by Bauer in 1947,[5] and explicitly published by Gerling and Pavlova in 1951.[6] However, this soon resulted in wildly varying ages; it was realized excess helium (including helium-3, rare on Earth) was generated by radiation, too.[7]
The first explicit publication of a gas-rich meteorite was Staroe Pesyanoe (often shortened to Pesyanoe), by Gerling and Levskii in 1956. In family with the later Fayetteville, Pesyanoe's helium level is ~1 million x10−8 ccSTP/g.[8]
Reynolds' publication of a "general Xe anomaly",[9] including 129I decay products and more, touched off the subfield of xenology,[10][11][12][13] continuing to today.[14][15]
The first publication of presolar grains in the 1980s[16] was precipitated by workers searching for noble gases;[17] PSGs were not simply checked via their gas contents.[18][19]
Lines of inquiry
As unreactive components, they are tracers of processes throughout and predating the Solar System:
Material age can be determined by relative exposure to direct solar and cosmic radiation (by cosmic ray tracks), and indirect creation of resultant nuclides. This includes Ar-Ar dating, I-Xe dating, and U to its various decay products including helium.[20][21][22]
The parent body of a meteorite can be traced in part via comparison of trace elements.[23][24][25] That meteorites are fragments of asteroids, and conditions on such asteroids, were partially deduced from gas evidence.[26][27][28][29]
This includes meteorite pairing, the re-association of meteorites which had split before recovery.[30][31]
Meteorite, parent, and Solar System histories are indicated by tracer elements,[32][33][34] including thermometry, a record of material temperature.[35]
The history of cosmic ray fluence. Meteorites do not show significant variation of cosmic rays over time.[45]
The Lost City Meteor was tracked, allowing an orbit determination back to the asteroid belt. Measurement of relatively short-half-life isotopes in the subsequent Lost City Meteorite then indicate radiation levels in that region of the Solar System.[46]
Gas study
The field of meteoritic gases follows progress in analytical methods.[47]
The first analyses were basic laboratory chemistry, such as acid dissolution. Various acids were necessary, due to mixtures of various soluble and insoluble minerals. Stepped etching gave higher levels of resolution and discrimination.
Pyrolysis was used, such as on highly acid resistant minerals. These two methods were alternately lauded and derided as "burning the haystack to find the needle."[48][49][50]
Meteoritical studies have tracked the progress of mass spectrometry,[51] a continual and rapid progression[52][53] comparable to or greater than Moore's Law.[54]
Interplanetary dust, like c-chondrites and enstatites, contains hosts for these gases and often measurable gas contents.[89][90][91] So too do a fraction of micrometeorites.[92][56][93][94]
Gas
Gas components were first named by descriptors, then letter codes;[95][96] the letter taxonomy "has become increasingly complicated and confusing with time."[97][98]
A,
Original Black 1972 letter code.[104] Soon found to be redundant.[105]
B, C, D
Original Black 1972 letter codes, attributed by him to the solar wind.[106][105]
E
Original Black 1972 letter code for "Exotic" neon- aberrant 20Ne/22Ne values.[107][108]
Planetary
"Planetary" gases (often shortened to "P") are depleted in light elements (He, Ne) compared to solar abundances (see below), or conversely, enriched in Kr, Xe.[109][110][111] This name originally implied an origin, the gas blend observed in terrestrial planets. Scientists wished to stop implying this,[112][111] but the habit was retained.[113][111]
P1, P2
Further developments of P, when all letters of the Latin alphabet were taken.[97]
Q, Q1, Q2
Different primordial gas blend, and its follow-on descriptors,[114][115] when all letters of the Latin alphabet were taken.[97]
Solar, subsolar
This gas component corresponds to the solar wind.[116][111] Solar flare gas can be distinguished by its greater depth,[117] and a slightly variant composition.[118] "Subsolar" is intermediary between solar and planetary.[119]
H
"Heavy" isotopes of xenon,[120][98] primarily r-process isotopes, plus p-process. Thus, sometimes seen as "HL," anomalous heavy and light isotopes.
↑Swindle, T. (1988). Trapped noble gases in meteorites. Tucson: University of Arizona Press. p. 535. Bibcode: 1988mess.book..535S. in Meteorites and the early solar system, J. F. Kerridge & M. S. Matthews Eds.
↑ 3.03.1Goswami, J.; Lal, D.; Wilkening, L. (1983). "Gas-Rich meteorites: Probes for particle environment and dynamical processes in the inner solar system". Space Science Reviews37 (1–2): 111–59. doi:10.1007/BF00213959. Bibcode: 1984SSRv...37..111G.
↑Gerling, E.; Pavlova, T. (1951). "Determination of the geological age of two stony meteorites by the argon method". Doklady Akademii Nauk SSSR77: 85–97.
↑Tolstikhin, I.; Marty, B.; Porcelli, D.; Hofmann, A. (Jul 2014). "Evolution of volatile species in the earth's mantle: A view from xenology". Geochimica et Cosmochimica Acta136: 229–46. doi:10.1016/j.gca.2013.08.034. Bibcode: 2014GeCoA.136..229T.
↑Diehl, R.; Hartmann, D.; Prantzos, N. (2018). "2.2.4 Extinct Radioactivity and Immediate Pre-Solar Nucleosynthesis". Astrophysics with Radioactive Isotopes (2nd ed.). Springer. ISBN978-3319919294.
↑Zinner, E.; Ming, T.; Anders, E. (24 Dec 1987). "Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite". Nature330 (6150): 730–32. doi:10.1038/330730a0. Bibcode: 1987Natur.330..730Z.
↑ 19.019.1Anders, E. (1988). Circumstellar material in meteorites: noble gases, carbon and nitrogen. Tucson: University of Arizona Press. p. 927. ISBN978-0816510634. in Meteorites and the Early Solar System, Kerridge, J., Matthews, M. eds.
↑Gerling, E.; Pavlova, T. (1951). "Determination of the geological age of two stony meteorites by the argon method". Doklady Akademii Nauk SSSR77: 85–97.
↑Wieler, R.; Baur, H.; Pedroni, A.; Signer, P.; Pellas, P. (1989). "Exposure history of the regolithic chondrite Fayetteville: I. Solar-gas-rich matrix". Geochimica et Cosmochimica Acta53 (6): 1441–59. doi:10.1016/0016-7037(89)90076-8. Bibcode: 1989GeCoA..53.1441W.
↑Lal, D. Rajan R. (19 Jul 1969). "Observations on Space Irradiation of Individual Crystals of Gas-rich Meteorites". Nature223 (5203): 269–71. doi:10.1038/223269a0. Bibcode: 1969Natur.223..269L.
↑Anders, E. (1978). "Most Stony Meteorites Come from the Asteroid Belt". Asteroids: An Exploration Assessment, NASA Conference Publication 2053. NASA. p. 57.
↑Obase, T.; Nakashima, D. (12 Jul 2019). "Past Solar Wind Fluxes at the Locations of Gas-Rich Meteorite Parent Bodies Based on Noble Gas Studies: Implications to the Past Heliocentric Distances". Proc. 82nd Annual Meeting of the Meteoritical Society82 (2157): 6270. Bibcode: 2019LPICo2157.6270O.
↑Padia, J.; Rao, M. (1989). "Neon isotope studies of Fayetteville and Kapoeta meteorites and clues to ancient solar activity". Geochimica et Cosmochimica Acta53 (6): 1461–67. doi:10.1016/0016-7037(89)90078-1. Bibcode: 1989GeCoA..53.1461P.
↑Begemann, F. (1972). "Ar37/Ar39 activity ratios in meteorites and the spatial consistency of the cosmic radiation". Journal of Geophysical Research77: 3650–59. doi:10.1029/JB077i020p03650. Bibcode: 1972JGR....77.3650B.
↑Okazaki, R.; Nagao, K. (Apr 2017). "Primordial and cosmogenic noble gases in the Sutter's Mill CM chondrite". Meteoritics & Planetary Science52 (4): 669–89. doi:10.1111/maps.12819. Bibcode: 2017M&PS...52..669O.
↑ 36.036.1Alaerts, L.; Lewis, R.; Matsuda, J; Anders, E. (1980). "Isotopic anomalies of noble gases in meteorites and their origins-Presolar components in the Murchison C2 chondrite". Geochimica et Cosmochimica Acta44 (2): 189–209. doi:10.1016/0016-7037(80)90131-3. Bibcode: 1980GeCoA..44..189A.
↑The Ancient Sun: Fossil record in the Earth, Moon and Meteorites. New York: Pergamon Press. 1980. ISBN978-0080263243.
↑Pepin, R. O.; McKay, D. S. (1986). Workshop On Past And Present Solar Radiation: The Record in Meteoritic and Lunar Regolith Material. Houston: Lunar And Planetary Institute.
↑Koop, L.; Heck, P. (2018). "High early solar activity inferred from helium and neon excesses in the oldest meteorite inclusions". Nature Astronomy2 (9): 709–13. doi:10.1038/s41550-018-0527-8. Bibcode: 2018NatAs...2..709K.
↑Heber, V.; Baur, H.; Wieler, R. (Nov 2001). Solar Krypton and Xenon in gas-rich meteorites: New insights into a unique archive of solar wind. American Institute of Physics. p. 387. ISBN0-7354-0042-3. in Solar and Galactic Composition: A Joint SOHO/ACE Workshop, R. F. Wimmer-Schweingruber, ed.
↑Pepin, R. Palma R. Schlutter D. (Feb 2010). "Noble gases in interplanetary dust particles, II: Excess helium-3 in cluster particles and modeling constraints on interplanetary dust particle exposures to cosmic-ray irradiation". Meteoritics & Planetary Science36 (11): 1515–34. doi:10.1111/j.1945-5100.2001.tb01843.x.
↑Wieler, R.; Pedroni, A.; Leya, I. (4 Feb 2010). "Cosmogenic neon in mineral separates from Kapoeta: No evidence for an irradiation of its parent body regolith by an early active Sun". Meteoritics & Planetary Science35 (2): 251–57. doi:10.1111/j.1945-5100.2000.tb01774.x.
↑Smith, T.; Cook, D.; Merchel, S.; Pavetich, S.; Rugel, G.; Scharf, A.; Leya, I. (Dec 2019). "The constancy of galactic cosmic rays as recorded by cosmogenic nuclides in iron meteorites". Meteoritics & Planetary Science54 (12): 2951–76. doi:10.1111/maps.13417. Bibcode: 2019M&PS...54.2951S.
↑Begemann, F. (10 Jul 1972). "Argon 37/argon 39 activity ratios in meteorites and the spatial constancy of the cosmic radiation". Journal of Geophysical Research77 (20): 3650–59. doi:10.1029/JB077i020p03650. Bibcode: 1972JGR....77.3650B.
↑Wieler, R.; Busemann, H.; Franchi, I. (2006). Trapping and Modification Processes of Noble Gases and Nitrogen in Meteorites and Their Parent Bodies. Tucson: University of Arizona Press. p. 499. ISBN9780816525621. in Meteorites and the Early Solar System II, Lauretta, D. McSween, H. eds.
↑Gilmour, J.; Lyon, I.; Johnston, W.; Turner, G. (Mar 1994). "RELAX: An ultrasensitive; resonance ionization mass spectrometer for xenon". Review of Scientific Instruments65 (3): 617–25. doi:10.1063/1.1145127. Bibcode: 1994RScI...65..617G.
↑Baur, H. (1999). "A noble gas mass spectrometer compressor source with two orders of magnitude improvement in sensitivity". EOS, Trans. Am. Geophys. Union46: F1118.
↑Thompson, Bruce (15 Nov 2012). "Driving High Sensitivity in Biomolecular MS". Genetic Engineering & Biotechnology News32 (20).
↑Takaoka, N.; Nagao, K.; Miura, Y. (1991). Noble Gas Study of Unique Meteorite Yamato-74063 by Laser Extraction. NIPR (Japan). p. 92. in 16th Symposium on Antarctic Meteorites, Jun 5-7 1991
↑ 56.056.1Stuart, F. M.; Harrop, P. J.; Knott, S.; Turner, G. (October 1999). "Laser extraction of helium isotopes from Antarctic micrometeorites: source of He and implications for the flux of extraterrestrial 3He to earth". Geochimica et Cosmochimica Acta63 (17): 2653–2665. doi:10.1016/S0016-7037(99)00161-1.
↑Osawa, T.; Nagao, K.; Nakamura, T.; Takaoka, N. (2000). "Noble gas measurement in individual micrometeorites using laser gas-extraction system". Antarctic Meteorite Research13: 322–41. Bibcode: 2000AMR....13..322O.
↑Avice, G.; Bekaert, D.; Chennaoui Aoudjehane, H.; Marty, B. (9 Feb 2018). "Noble gases and nitrogen in Tissint reveal the composition of the Mars atmosphere". Geochemical Perspectives Letters6: 11–16. doi:10.7185/geochemlet.1802.
↑Padia, J.; Rao, M. (Jun 1989). "Neon isotope studies of Fayetteville and Kapoeta meteorites and clues to ancient solar activity". Geochimica et Cosmochimica Acta53 (6): 1461–67. doi:10.1016/0016-7037(89)90078-1. Bibcode: 1989GeCoA..53.1461P.
↑Padia, J., Rao, M. "Neon isotope studies of Fayetteville and Kapoeta meteorites and clues to ancient solar activity ". (Jun 1989). Geochimica et Cosmochimica Acta. 53(6): 1461-67.
↑ 63.063.1Mueller, O., Zahringer, J. "Chemische Unterschiede bei urdelgashaltigen Steinmeteoriten". (1966). Earth Planet. Sci. Lett. (1): 25.
↑Murer, C.; Baur, H.; Signer, P.; Wieler, R. (Mar 1997). "Helium, neon, and argon abundances in the solar wind: In vacuo etching of meteoritic iron-nickel". Geochimica et Cosmochimica Acta61 (6): 1303–14. doi:10.1016/S0016-7037(97)83772-6. Bibcode: 1997GeCoA..61.1303M.
↑Jabeen, I.; Kusakabe, M.; Nagao, K.; Nakamura, T. (1998). "Tsukuba meteorite: H chondrite, or a new parent body?". Meteoritics & Planetary Science33: 77.
↑Nakashima, D.; Nakamura, T.; Sekiya, M.; Takaoka, N. (2002). "Cosmic-ray exposure age and heliocentric distance of the parent body of H chondrites Y75029 and Tsukuba". Antarctic Meteorite Research15: 97–113.
↑ 70.070.170.2Schultz, L., Kruse, H. "Helium, Neon, and Argon in Meteorites: A Data Compilation". Max-Planck-Institut fur Chemie, Mainz. (1983).
↑Inada, A.; Nagao, K. (2003). "Noble gases and cosmic-ray x host of Willard (b) H-chondrite: A breccia with". Meteoritics & Planetary Science38: 5170.
↑Quijano-Rico, M.; Wanke, H. (1969). Millman, P. M.. ed. Meteorite Research: Proceedings of a Symposium on Meteorite Research Held in Vienna, Austria, 7–13 August 1968. Springer Science & Business Media. p. 134. ISBN978-90-277-0132-9.
↑Romstedt, J.; Pedroni, A. (Jul 1993). "Irradiation History of ACFER 111, Inferred from Nuclear Tracks and Rare Gases". Meteoritics28 (3): 424. Bibcode: 1993Metic..28R.424R.
↑Pedroni, A.; Begemann, F. (1994). "On unfractionated solar noble gas in the H3-6 meteorite Acfer 111". Meteoritics29 (5): 632. doi:10.1111/j.1945-5100.1994.tb00776.x.
↑Levskii, L. (1979). "Rare gases in carbonaceous chondrites". Meteoritika38: 27–36. Bibcode: 1979Metik..38...27L.
↑Meier, M.; Schmitz, B.; Alwmark, C. (2014). "He and Ne in individual chromite grains from the regolith breccia Ghubara (L5):Exploring the history of the L chondrite parent body regolith". Meteoritics & Planetary Science49 (4): 576–94. doi:10.1111/maps.12275. Bibcode: 2014M&PS...49..576M.
↑Ashworth, J.; Barber, D. (1975). "Electron petrography of shock effects in a gas-rich enstatite-achondrite". Contributions to Mineralogy and Petrology49 (2): 149–62. doi:10.1007/BF00373858. Bibcode: 1975CoMP...49..149A.
↑Poupeau, G.; Kirsten, T.; Steinbrunn, F.; Storzer, D. (Dec 1974). "The records of solar wind and solar flares in aubrites". Earth and Planetary Science Letters24 (2): 229–41. doi:10.1016/0012-821X(74)90101-0. Bibcode: 1974E&PSL..24..229P.
↑Pepin, R.; Becker, R.; Rider, P. (1995). "Xenon and krypton isotopes in extraterrestrial regolith soils and in the solar wind". Geochimica et Cosmochimica Acta59 (23): 4997–5022. doi:10.1016/0016-7037(96)80916-1. Bibcode: 1995GeCoA..59.4997P.
↑Merrihue, C. (1964). "Rare Gas Evidence For Cosmic Dust In Modern Pacific Red Clay". Ann. N.Y. Acad. Sci.119 (1): 351–67. doi:10.1111/j.1749-6632.1965.tb47445.x.
↑Olinger, C.; Maurette, M.; Walker, R.; Hohenberg, C. (1990). "Neon measurements of individual Greenland sediment particles: proof of an extraterrestrial origin". Earth Planet. Sci. Lett.100: 77–93. doi:10.1016/0012-821X(90)90177-Y.
↑Osawa, T.; Nakamura, T.; Nagao, K. (2003). "Noble gas isotopes and mineral assemblages of Antarctic micrometeorites collected at the meteorite ice field around the Yamato mountains". Meteoritics & Planetary Science38 (11): 1627–40. doi:10.1111/j.1945-5100.2003.tb00005.x. Bibcode: 2003M&PS...38.1627O.
↑Heck, P.; Schmitz, B.; Baur, H.; Wieler, R. (March 2008). "Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden, and new evidence for the L-chondrite parent body breakup event". Meteoritics & Planetary Science43 (3): 517–28. doi:10.1111/j.1945-5100.2008.tb00669.x. Bibcode: 2008M&PS...43..517H.
↑ 96.096.1Nakamura, T.; Nagao, K. Metzler; K.; Takaoka, N. (Jan 1999). "Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies". Geochimica et Cosmochimica Acta63 (2): 257–73. doi:10.1016/S0016-7037(98)00278-6. Bibcode: 1999GeCoA..63..257N.
↑ 98.098.1Huss, G.; Lewis, R. (Jan 1995). "Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type". Geochimica et Cosmochimica Acta59 (1): 115–60. doi:10.1016/0016-7037(94)00376-W. Bibcode: 1995GeCoA..59..115H.
↑Eberhardt, P.; Eugster, O.; Geiss, J.; Marti, K. (1965). "Rare Gas Measurements in 30 Stone Meteorites". Z. Naturforsch.21: 414–26. Bibcode: 1966ZNatA..21..414E.
↑Black, David C. (March 1972). "On the origins of trapped helium, neon and argon isotopic variations in meteorites—I. Gas-rich meteorites, lunar soil and breccia". Geochimica et Cosmochimica Acta36 (3): 347–375. doi:10.1016/0016-7037(72)90028-2. Bibcode: 1972GeCoA..36..347B.
↑Zahnle, K. (1993). Planetary Noble Gases. Tucson: University of Arizona Press. p. 1305. ISBN0816513341. in Protostars and Planets III, Levy, E.; Lunine, Jonathan I.; eds.
↑Heymann, D. (1970). The Noble Gases. New York: Gordon and Breach. p. 29. ISBN9780677149509. in Handbook of Elemental Abundances in Meteorites, Mason, B. ed.
↑Lewis, R.; Srinavasan, B.; Anders, E. (1975). "Host phase of a strange xenon component in Allende meteorite". Science190 (4221): 1251–62. doi:10.1126/science.190.4221.1251.
↑Kerridge, John F. Macdougall, J. Douglas Carlson Jodi (1979). "Iron-nickel sulfides in the Murchison meteorite and their relationship to phase Q1". Earth and Planetary Science Letters43 (1): 1. doi:10.1016/0012-821X(79)90149-3. Bibcode: 1979E&PSL..43....1K.
↑Busemann, Henner; Baur, Heinrich; Wieler, Rainer (2000). "Primordial noble gases in "phase Q" in carbonaceous and ordinary chondrites studied by closed-system stepped etching". Meteoritics & Planetary Science35 (5): 949. doi:10.1111/j.1945-5100.2000.tb01485.x. Bibcode: 2000M&PS...35..949B.
↑Gallino, R.; Bussot, M.; Picchiot, G.; Raiteri, C. (22 Nov 1990). "On the astrophysical interpretation of isotope anomalies in meteoritic SiC grains". Nature348 (6299): 298–302. doi:10.1038/348298a0. Bibcode: 1990Natur.348..298G.
Handbook of Elemental Abundances in Meteorites, Mason, B. ed. 1970 Gordon and Breach New York ISBN9780677149509 Chapter 2: The Noble Gases, Heymann, D., p. 29
Mazor, E. Heymann, D. Anders, E. Noble gases in carbonaceous chondrites. 1970 Geochimica et Cosmochimica Acta vol. 34 p. 781-824
Goswami, J. Lal, D. Wilkening, L. Gas-Rich meteorites: Probes for particle environment and dynamical processes in the inner solar system 1983 Space Science Reviews vol. 37 p. 111-59
The Sun in Time, Sonett, C. Giampapa, M. Mathews, M. eds. 1991 University of Arizona Press Tucson ISBN978-0-8165-1297-3
Ozima, M. Podosek, F. Noble Gases in Geochemistry, 2nd ed. 2002 Cambridge University Press Cambridge ISBN9780521803663
Noble Gases in Geochemistry and Cosmochemistry, Porcelli, D. Ballentine, C. Wieler, R. eds. 2002 Mineralogical Society of America Washington, DC
Treatise on Geochemistry vol.1 2003 1.14 Noble Gases, Podosek, F. p. 381-403
Meteorites and the Early Solar System II, Lauretta, D. McSween, H. eds. 2006 University of Arizona Press Tucson ISBN9780816525621
Geochemical Perspectives Jul 2013 vol. 2 issue 2 Special issue, Noble Gas Constraints on the Origin and Evolution of Earth's Volatiles ISSN 2223-7755
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/Gas-rich meteorites. Read more