From HandWiki - Reading time: 2 min
HYDROSOL (short for Solar hydrogen via water splitting in advanced monolithic reactors for future solar power plants) is a series of European Union funded projects for the promotion of renewable energy. Its aim is the production of hydrogen using concentrated solar power with a specific thermochemical cycle.
The Fifth Framework Programme for Research and Technological Development (FP5) project HYDROSOL started in December 2002 with a budget of €2.6 million. A pilot-scale solar reactor was designed,[1] built and operated at the German Aerospace Center[2] with a solar furnace facility in Cologne (Germany), continuously producing "solar hydrogen".[3]
The FP6 HYDROSOL II is a pilot reactor of 100 kW scale for solar thermochemical hydrogen production at the Plataforma Solar de Almería in Spain , which started in November 2005 and has been in operation since 2008.[4][5]
The FP7 HYDROSOL-3D project,[6] started on January 1, 2010 and ran until January 1, 2013.[7] The Hydrosol series projects were conceived and coordinated by the Aerosol and Particle Technology Laboratory of the Centre for Research and Technology-Hellas and Ciemat. In 2006, the Hydrosol project was awarded the Descartes Prize by the European Commission for Collaborative Scientific Research.[8]
In early 2017, the Synlight project at the German Aerospace Centre (DLR) created an artificial sun in the lab.[9][10][11] In an effort to better optimise solar hydrogen production at scale, the electrically powered 'sun' is able to provide focussed temperatures approaching 3,000°C, far above the temperatures currently reached by commercial concentrated solar power stations.