Mission type | Exoplanet observation |
---|---|
Website | www |
Mission duration | 5-6 years |
Main telescope | |
Type | 4-telescope array with 6:1 baseline ratio, maximum/minimum allowed separation: 600 m / 10 m |
Diameter | 4 x 2-3.5 m |
Wavelengths | 4 – 18 μm (mid-infrared) |
Resolution | spectral: 35 - 50 |
Large Interferometer For Exoplanets (LIFE) is a project started in 2017 to develop the science, technology and a roadmap for a space mission to detect and characterize the atmospheres of dozens of warm, terrestrial extrasolar planets. The current plan is for a nulling interferometer operating in the mid-infrared.[1][2][3][4][5][6]
The LIFE space observatory concept is different from previous space missions, which covered a similar wavelength regime in the mid-infrared (MIR). This includes recent missions such as James Webb Space Telescope, Spitzer Space Telescope, and older missions such as ISO, IRAS, and AKARI.
When present in sufficient quantities in the atmosphere, chemicals that are indicators of life are known as atmospheric biomarkers. The LIFE Mission is designed to observe in the mid-infrared light, where many of these molecules show spectral features.
Original source: https://en.wikipedia.org/wiki/Large Interferometer For Exoplanets.
Read more |