The survival of some microorganisms exposed to outer space has been studied using both simulated facilities and low Earth orbit exposures. Bacteria were some of the first organisms investigated, when in 1960 a Russian satellite carried Escherichia coli, Staphylococcus, and Enterobacter aerogenes into orbit.[1] Many kinds of microorganisms have been selected for exposure experiments since, as listed in the table below.
Experiments of the adaption of microbes in space have yielded unpredictable results. While sometimes the microorganism may weaken, they can also increase in their disease-causing potency.[1]
It is possible to classify these microorganisms into two groups, the human-borne and the extremophiles. Studying the human-borne microorganisms is significant for human welfare and future crewed missions in space, whilst the extremophiles are vital for studying the physiological requirements of survival in space.[2]NASA has pointed out that normal adults have ten times as many microbial cells as human cells in their bodies.[3] They are also nearly everywhere in the environment and, although normally invisible, can form slimy biofilms.[3]
Extremophiles have adapted to live in some of the most extreme environments on Earth. This includes hypersaline lakes, arid regions, deep sea, acidic sites, cold and dry polar regions and permafrost.[4] The existence of extremophiles has led to the speculation that microorganisms could survive the harsh conditions of extraterrestrial environments and be used as model organisms to understand the fate of biological systems in these environments. The focus of many experiments has been to investigate the possible survival of organisms inside rocks (lithopanspermia),[2] or their survival on Mars for understanding the likelihood of past or present life on that planet.[2] Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Measuring the resistance of such organisms to space conditions can be applied to develop adequate decontamination procedures.[5]
↑Nicholson, W. L.; Moeller, R.; Horneck, G. (2012). "Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT". Astrobiology12 (5): 469–86. doi:10.1089/ast.2011.0748. PMID22680693. Bibcode: 2012AsBio..12..469N.
↑ 7.07.17.27.37.47.57.6Taylor, G. R.; Bailey, J. V.; Benton, E. V. (1975). "Physical dosimetric evaluations in the Apollo 16 microbial response experiment". Life Sciences in Space Research13: 135–41. PMID11913418.
↑Olsson-Francis, K.; de la Torre, R.; Towner, M. C.; Cockell, C. S. (2009). "Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions". Origins of Life and Evolution of Biospheres39 (6): 565–579. doi:10.1007/s11084-009-9167-4. PMID19387863. Bibcode: 2009OLEB...39..565O.
↑ 13.013.1Imshenetskiĭ, A. A.; Murzakov, B. G.; Evdokimova, M. D.; Dorofeeva, I. K. (1984). "Survival of bacteria in the Artificial Mars unit". Mikrobiologiia53 (5): 731–7. PMID6439981.
↑Wassmann, M. (2012). "Survival of Spores of the UV-ResistantBacillus subtilisStrain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E". Astrobiology12 (5): 498–507. doi:10.1089/ast.2011.0772. PMID22680695. Bibcode: 2012AsBio..12..498W.
↑Cockell, C. S.; Schuerger, A. C.; Billi, D.; Imre Friedmann, E.; Panitz, C. (2005). "Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029". Astrobiology5 (2): 127–140. doi:10.1089/ast.2005.5.127. PMID15815164. Bibcode: 2005AsBio...5..127C.
↑Billi, D. (2011). "Damage Escape and Repair in Dried Chroococcidiopsis spp. From Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions". Astrobiology11 (1): 65–73. doi:10.1089/ast.2009.0430. PMID21294638. Bibcode: 2011AsBio..11...65B.
↑Baqué, Mickael; de Vera, Jean-Pierre; Rettberg, Petra; Billi, Daniela (20 August 2013). "The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes". Acta Astronautica91: 180–186. doi:10.1016/j.actaastro.2013.05.015. Bibcode: 2013AcAau..91..180B.
↑Yamagishi Akihiko, Kawaguchi Yuko, Hashimoto Hirofumi, Yano Hajime, Imai Eiichi, Kodaira Satoshi, Uchihori Yukio, Nakagawa Kazumichi (2018). "Environmental Data and Survival Data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station Obtained by the Tanpopo Mission". Astrobiology18 (11): 1369–1374. doi:10.1089/ast.2017.1751. PMID30289276. Bibcode: 2018AsBio..18.1369Y.
↑Mastrapa, R. M. E; Glanzberg, H.; Head, J. N; Melosh, H. J; Nicholson, W. L (2001). "Survival of bacteria exposed to extreme acceleration: Implications for panspermia". Earth and Planetary Science Letters189 (1–2): 1–8. doi:10.1016/S0012-821X(01)00342-9. Bibcode: 2001E&PSL.189....1M.
↑De La Vega, U. P.; Rettberg, P.; Reitz, G. (2007). "Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans". Advances in Space Research40 (11): 1672–1677. doi:10.1016/j.asr.2007.05.022. Bibcode: 2007AdSpR..40.1672D.
↑Young, R. S.; Deal, P. H.; Bell, J.; Allen, J. L. (1964). "Bacteria under simulated Martian conditions". Life Sciences in Space Research2: 105–11. PMID11881642.
↑ 36.036.136.236.3Grigoryev, Y. G. (1972). "Influence of Cosmos 368 space flight conditions on radiation effects in yeasts, hydrogen bacteria and seeds of lettuce and pea". Life Sciences in Space Research10: 113–8. PMID11898831.
↑Willis, M.; Ahrens, T.; Bertani, L.; Nash, C. (2006). "Bugbuster—survivability of living bacteria upon shock compression". Earth and Planetary Science Letters247 (3–4): 185–196. doi:10.1016/j.epsl.2006.03.054. Bibcode: 2006E&PSL.247..185W.
↑ 38.038.138.238.338.4de Vera, J. P.; Dulai, S.; Kereszturi, A.; Koncz, L.; Pocs, T. (17 October 2013). "Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions". International Journal of Astrobiology13 (1): 35–44. doi:10.1017/S1473550413000323. Bibcode: 2014IJAsB..13...35D.
↑Imshenetskiĭ, A. A.; Kuzyurina, L. A.; Yakshina, V.M. (1979). "Xerophytic microorganisms multiplying under conditions close to Martian ones". Mikrobiologiia48 (1): 76–9. PMID106224.
↑ 41.041.141.241.341.4Hawrylewicz, E.; Hagen, C. A.; Tolkacz, V.; Anderson, B. T.; Ewing, M. (1968). "Life Sciences in Space Research VI". pp. 146–156.
↑ 42.042.142.242.342.442.542.6Zhukova, A. I.; Kondratyev, I. I. (1965). "On artificial Martian conditions reproduced for microbiological research". Life Sciences in Space Research3: 120–6. PMID12199257.
↑Jänchena, Jochen; Feyha, Nina; Szewzyka, Ulrich; de Vera, Jean-Pierre P. (3 August 2015). "Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions". International Journal of Astrobiology15 (2): 107–118. doi:10.1017/S147355041500018X. Bibcode: 2016IJAsB..15..107J.
↑Raktim, Roy; Phani, Shilpa P.; Sangram, Bagh (1 September 2016). "A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions". Astrobiology16 (9): 677–689. doi:10.1089/ast.2015.1420. PMID27623197. Bibcode: 2016AsBio..16..677R.
↑Roten, C. A.; Gallusser, A.; Borruat, G. D.; Udry, S. D.; Karamata, D. (1998). "Impact resistance of bacteria entrapped in small meteorites". Bulletin de la Société Vaudoise des Sciences Naturelles86 (1): 1–17.
↑Novikova, N.; Deshevaya, E.; Levinskikh, M.; Polikarpov, N.; Poddubko, S. (January 2015). "Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the 'Expose-R' experiment". International Journal of Astrobiology14 (1): 137–142. doi:10.1017/S1473550414000731. Bibcode: 2015IJAsB..14..137N.
↑Sarantopoulou, E.; Stefi, A.; Kollia, Z.; Palles, D.; Petrou, .P.S.; Bourkoula, A.; Koukouvinos, G.; Velentzas, A.D. et al. (2014). "Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum". Journal of Applied Physics116 (10): 104701. doi:10.1063/1.4894621. Bibcode: 2014JAP...116j4701S.
↑"Aquacells — Flagellates under long-term microgravity and potential usage for life support systems". Microgravity Sci. Technol.18 (210): 210–214. 2006. doi:10.1007/BF02870411. Bibcode: 2006MicST..18..210H.
↑Strauch Sebastian M., Becker Ina, Pölloth Laura, Richter Peter R., Haag Ferdinand W. M., Hauslage Jens, Lebert Michael (2018). "Restart capability of resting-states of Euglena gracilis after 9 months of dormancy: preparation for autonomous space flight experiments". International Journal of Astrobiology17 (2): 101–111. doi:10.1017/S1473550417000131. Bibcode: 2018IJAsB..17..101S.
↑Strauch S.M., Richter P., Schuster M., Häder D.-P. (2010). "The beating pattern of the flagellum of Euglena gracilis under altered gravity during parabolic flights". Journal of Plant Physiology167 (1): 41–46. doi:10.1016/j.jplph.2009.07.009. PMID19679374.
↑Zimmermann, M. W.; Gartenbach, K. E.; Kranz, A. R. (1994). "First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores". Advances in Space Research14 (10): 47–51. doi:10.1016/0273-1177(94)90449-9. PMID11539984. Bibcode: 1994AdSpR..14j..47Z.
↑ 68.068.168.2Sánchez, Francisco Javier; Meeßen, Joachim; Ruiza, M. del Carmen; Sancho, Leopoldo G.; de la Torre, Rosa (6 September 2013). "UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances". International Journal of Astrobiology13 (1): 1–18. doi:10.1017/S147355041300027X. Bibcode: 2014IJAsB..13....1S.
↑Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna; Horneck, Gerda (January 2015). "Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R". International Journal of Astrobiology14 (Special Issue 1): 129–135. doi:10.1017/S1473550414000408. Bibcode: 2015IJAsB..14..129N.
↑Rosa, Zélia Miller Ana, Cubero Beatriz, Martín-Cerezo M. Luisa, Raguse Marina, Meeßen Joachim (2017). "The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa". Astrobiology17 (2): 145–153. doi:10.1089/ast.2015.1454. PMID28206822. Bibcode: 2017AsBio..17..145D.
↑de La Torre Noetzel, R. (2007). "BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem". Advances in Space Research40 (11): 1665–1671. doi:10.1016/j.asr.2007.02.022. Bibcode: 2007AdSpR..40.1665D.
↑ 75.075.1De Vera, J.-P.; Horneck, G.; Rettberg, P.; Ott, S. (2004). "The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: Germination capacity of lichen ascospores in response to simulated space conditions". Advances in Space Research33 (8): 1236–43. doi:10.1016/j.asr.2003.10.035. PMID15806704. Bibcode: 2004AdSpR..33.1236D.
↑Horneck, G. (2008). "Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested". Astrobiology8 (1): 17–44. doi:10.1089/ast.2007.0134. PMID18237257. Bibcode: 2008AsBio...8...17H.
↑Brandt, Annette; De Vera, Jean-Pierre; Onofri, Silvano; Ott, Sieglinde (2014). "Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS". International Journal of Astrobiology14 (3): 411–425. doi:10.1017/S1473550414000214. Bibcode: 2015IJAsB..14..411B.
↑Higashibata A (2006). "Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight". Journal of Experimental Biology209 (16): 3209–3218. doi:10.1242/jeb.02365. PMID16888068.
↑ 84.084.1Jönsson, K. I.; Rabbow, E.; Schill, Ralph O.; Harms-Ringdahl, M.; Rettberg, P. (2008). "Tardigrades survive exposure to space in low Earth orbit". Current Biology18 (17): R729–R731. doi:10.1016/j.cub.2008.06.048. PMID18786368.