List of missions to Mars

From HandWiki - Reading time: 21 min

Short description: None
Launches to Mars
Decade
1960s
12
1970s
11
1980s
2
1990s
6
2000s
8
2010s
6
2020s
4

This is a list of the 50 spacecraft missions (including unsuccessful ones) relating to the planet Mars, such as orbiters and rovers.

Missions

Mission Type Legend
  Mission to Mars
  Gravity assist, destination elsewhere
Mission Spacecraft Launch Date Operator Mission Type[1] Outcome[2] Remarks Carrier rocket[3]
1M No.1 1M No.1 10 October 1960 OKB-1
 Soviet Union
Flyby Launch failure Failed to achieve Earth orbit Molniya
1M No.2 1M No.2 14 October 1960 OKB-1
 Soviet Union
Flyby Launch failure Failed to achieve Earth orbit Molniya
2MV-4 No.1 2MV-4 No.1 24 October 1962  Soviet Union Flyby Launch failure Booster stage ("Block L") disintegrated in LEO Molniya
Mars 1 Mars 1
(2MV-4 No.2)
1 November 1962  Soviet Union Flyby Spacecraft failure Communications lost before first flyby Molniya
2MV-3 No.1 2MV-3 No.1 4 November 1962  Soviet Union Lander Launch failure Never left LEO Molniya
Mariner 3 Mariner 3 5 November 1964 NASA
 United States
Flyby Launch failure Payload fairing failed to separate Atlas LV-3 Agena-D
Mariner 4 Mariner 4 28 November 1964 NASA
 United States
Flyby Successful First successful flyby of Mars on 15 July 1965 Atlas LV-3 Agena-D
Zond 2 Zond 2
(3MV-4A No.2)
30 November 1964  Soviet Union Flyby Spacecraft failure Communications lost before flyby Molniya
Mariner 6 Mariner 6 25 February 1969 NASA
 United States
Flyby Successful Atlas SLV-3C Centaur-D
2M No.521 2M No.521

(1969A)[4]

27 March 1969  Soviet Union Orbiter Launch failure Failed to achieve Earth orbit Proton-K/D
Mariner 7 Mariner 7 27 March 1969 NASA
 United States
Flyby Successful Atlas SLV-3C Centaur-D
2M No.522 2M No.522

(1969B)[4]

2 April 1969  Soviet Union Orbiter Launch failure Failed to achieve Earth orbit Proton-K/D
Mariner 8 Mariner 8 9 May 1971 NASA
 United States
Orbiter Launch failure Failed to achieve Earth orbit Atlas SLV-3C Centaur-D
Kosmos 419 Kosmos 419
(3MS No.170)
10 May 1971  Soviet Union Orbiter Launch failure Never left LEO; booster stage burn timer set incorrectly Proton-K/D
Mars 2 Mars 2
(4M No.171)
19 May 1971  Soviet Union Orbiter Successful On November 27 it became in short sequence the second spacecraft to orbit another planet.[5] Operated for 362 orbits[6] Proton-K/D
Mars 2 lander
(SA 4M No.171)
Lander Spacecraft failure First lander to impact Mars. Deployed from Mars 2, failed to land during attempt on 27 November 1971.[7]
PrOP-M Rover Failure
Lost with Mars 2
First rover launched to Mars. Lost when the Mars 2 lander crashed into the surface of Mars.
Mars 3 Mars 3
(4M No.172)
28 May 1971  Soviet Union Orbiter Successful On December 2 it became in short sequence the third spacecraft to orbit another planet.[5] Operated for 20 orbits[8][9] Proton-K/D
Mars 3 lander
(SA 4M No.172)
Lander Partial success[10][11] First lander to make a soft landing on Mars. Landed on 2 December 1971. First partial image (70 lines) transmitted showing "gray background with no details".[8] Contact lost 20 seconds after transmission started, 110 seconds after landing.[12][13]
PrOP-M Rover Carrier vehicle failed before rover was deployed First rover to make a soft landing on another planet. 4.5 kg (9.9 lb) rover connected to the Mars 3 lander by a tether. Deployment status unknown due to loss of communications with the Mars 3 lander.[12]
Mariner 9 Mariner 9 30 May 1971 NASA
 United States
Orbiter Successful[14] First spacecraft to orbit another planet, two weeks ahead of Mars 2 on November 14.[5] Deactivated 516 days after entering orbit. Atlas SLV-3C Centaur-D
Mars 4 Mars 4
(3MS No.52S)
21 July 1973  Soviet Union Orbiter Partial success[15] Failed to perform orbital insertion burn. Returned photographs of Mars during flyby. Proton-K/D
Mars 5 Mars 5
(3MS No.53S)
25 July 1973  Soviet Union Orbiter Successful Contact lost after 9 days in Mars orbit. Returned 180 frames Proton-K/D
Mars 6 Mars 6
(3MP No.50P)
5 August 1973  Soviet Union Flyby Successful Flyby bus collected data.[16] Proton-K/D
Mars 6 lander Lander Spacecraft failure Contact lost upon landing, atmospheric data mostly unusable.
Mars 7 Mars 7
(3MP No.51P)
9 August 1973  Soviet Union Flyby Successful Flyby bus collected data. Proton-K/D
Mars 7 lander Lander Spacecraft failure Separated from coast stage prematurely, failed to enter Martian atmosphere.
Viking 1 Viking 1 orbiter 20 August 1975 NASA
 United States
Orbiter Successful Operated for 1385 orbits. Entered Mars orbit on 19 June 1976. Titan IIIE Centaur-D1T
Viking 1 lander Lander Successful First successful Mars lander. Deployed from Viking 1 orbiter. Landed on Mars on 20 July 1976. Operated for 2245 sols.
Viking 2 Viking 2 orbiter 9 September 1975 NASA
 United States
Orbiter Successful Operated for 700 orbits. Entered Mars orbit on 7 August 1976. Titan IIIE Centaur-D1T
Viking 2 lander Lander Successful Deployed from Viking 2 orbiter. Landed on Mars on September 1976. Operated for 1281 sols (11 April 1980).
Phobos 1 Phobos 1
(1F No.101)
7 July 1988  Soviet Union Orbiter Spacecraft failure Communications lost before reaching Mars; failed to enter orbit Proton-K/D-2
DAS Phobos lander Failure
Lost with Phobos 1
To have been deployed by Phobos 1
Phobos 2 Phobos 2
(1F No.102)
12 July 1988  Soviet Union Orbiter Mostly successful Orbital observations successful, communications lost before lander deployment. Proton-K/D-2
Prop-F Phobos rover Failure
Lost with Phobos 2
To have been deployed by Phobos 2
DAS Phobos lander Failure
Lost with Phobos 2
To have been deployed by Phobos 2
Mars Observer Mars Observer 25 September 1992 NASA
 United States
Orbiter Spacecraft failure Lost communications before orbital insertion Commercial Titan III
Mars Global Surveyor Mars Global Surveyor 7 November 1996 NASA
 United States
Orbiter Successful Operated for ten years Delta II 7925
Mars 96 Mars 96
(M1 No.520) (Mars-8)[4]
16 November 1996 Rosaviakosmos
 Russia
Orbiter
Penetrators
Launch failure Never left LEO Proton-K/D-2
Mars 96 lander Lander Launch failure
Lost with Mars 96
Two Mars landers to have been deployed by Mars 96.
Mars 96 lander Lander Launch failure
Lost with Mars 96
Mars 96 penetrator Penetrator Launch failure
Lost with Mars 96
Two Mars Penetrators to have been deployed by Mars 96.
Mars 96 penetrator Penetrator Launch failure
Lost with Mars 96
Mars Pathfinder Mars Pathfinder 4 December 1996 NASA
 United States
Lander Successful Landed at 19.13°N 33.22°W on 4 July 1997,[17] Last contact on 27 September 1997 Delta II 7925
Sojourner Rover Successful First rover to operate on another planet. Operated for 84 days[18]
Nozomi Nozomi
(PLANET-B)
3 July 1998 ISAS
 Japan
Orbiter Spacecraft failure Performed a Mars flyby. Later contact lost due to loss of fuel. However provided crucial information about the deep space environment.[19] M-V
Mars Climate Orbiter Mars Climate Orbiter 11 December 1998 NASA
 United States
Orbiter Spacecraft failure Approached Mars too closely during orbit insertion attempt due to a software interface bug involving different units for impulse and either burned up in the atmosphere or entered solar orbit Delta II 7425
Mars Polar Lander / Deep Space 2 Mars Polar Lander 3 January 1999 NASA
 United States
Lander Spacecraft failure Failed to function after landing Delta II 7425
Deep Space 2 Penetrator Spacecraft failure No data transmitted after deployment from MPL.
Deep Space 2 Penetrator Spacecraft failure
Mars Odyssey Mars Odyssey 7 April 2001 NASA
 United States
Orbiter Operational Expected to remain operational until 2025. Delta II 7925
Mars Express Mars Express 2 June 2003 ESA
Orbiter Operational Enough fuel to remain operational until 2035 Soyuz-FG / Fregat
Beagle 2 Lander Lander failure No communications received after release from Mars Express. Orbital images of landing site suggest a successful landing, but two solar panels failed to deploy, obstructing its communications.
Spirit Spirit
(MER-A)
10 June 2003 NASA
 United States
Rover Successful Landed on 4 January 2004.
Operated for 2208 sols[20]
Delta II 7925
Opportunity Opportunity
(MER-B)
8 July 2003 NASA
 United States
Rover Successful Landed on 25 January 2004.
Operated for 5351 sols
Delta II 7925H
Rosetta Rosetta 2 March 2004 ESA
Flyby

(Gravity assist)

Successful Flyby in February 2007 en route to 67P/Churyumov–Gerasimenko[21] Ariane 5G+
Philae Flyby

(Gravity assist)

Successful
Mars Reconnaissance Orbiter Mars Reconnaissance Orbiter 12 August 2005 NASA
 United States
Orbiter Operational Entered orbit on 10 March 2006 Atlas V 401
Phoenix Phoenix 4 August 2007 NASA
 United States
Lander Successful Landed on 25 May 2008.
End of mission 2 November 2008
Delta II 7925
Dawn Dawn 27 September 2007 NASA
 United States
Flyby

(Gravity assist)

Successful Flyby in February 2009 en route to 4 Vesta and Ceres Delta II 7925H
Fobos-Grunt / Yinghuo-1 Fobos-Grunt 8 November 2011 Roskosmos
 Russia
Orbiter
Phobos sample return
Launch failure Never left LEO (intended to depart under own power) Zenit-2M
Yinghuo-1 CNSA
 China
Orbiter Launch failure
Lost with Fobos-Grunt
To have been deployed by Fobos-Grunt
Mars Science Laboratory Curiosity
(Mars Science Laboratory)
26 November 2011 NASA
 United States
Rover Operational Landed on 6 August 2012 Atlas V 541
Mars Orbiter Mission Mars Orbiter Mission 5 November 2013 ISRO
 India
Orbiter Successful Entered orbit on 24 September 2014. Mission extended to 2022, where the mission concluded on September 27, 2022 after contact was lost.[22] PSLV-XL
MAVEN MAVEN 18 November 2013 NASA
 United States
Orbiter Operational Orbit insertion on 22 September 2014[23] Atlas V 401
ExoMars 2016 ExoMars Trace Gas Orbiter 14 March 2016 ESA/Roscosmos
ESA/ Russia
Orbiter Operational Entered orbit on 19 October 2016 Proton-M / Briz-M
Schiaparelli EDM lander ESA
Lander Spacecraft failure Carried by the ExoMars Trace Gas Orbiter. Although the lander crashed,[24][25] engineering data on the first five minutes of entry was successfully retrieved.[26][27]
InSight InSight 5 May 2018[28][29] NASA
 United States
Lander Successful Landed on 26 November 2018. Last contact 15 December 2022.[30] Atlas V 401
MarCO A Flyby Successful Flyby 26 November 2018. Last contact 29 December 2018.
MarCO B Flyby Successful Flyby 26 November 2018. Last contact 4 January 2019.
Emirates Mars Mission Hope 19 July 2020[31] MBRSC
 United Arab Emirates
Orbiter Operational Entered orbit on 9 February 2021.[32][33][34] H-IIA
Tianwen-1 Tianwen-1 orbiter 23 July 2020[35][36] CNSA
 China
Orbiter Operational Entered orbit on 10 February 2021 Long March 5
Tianwen-1 lander Lander Successful Landed on 14 May 2021
Zhurong rover Rover Successful Landed on 14 May 2021[37] Deployed by the Tianwen-1 lander on 22 May 2021. Became inactive on 20 May 2022.
Tianwen-1 Remote Camera Lander Successful Landed on 14 May 2021 Deployed by the Zhurong rover on 1 June 2021.[38]
Tianwen-1 Deployable Camera 2[39] Orbiter Successful Entered orbit on 10 February 2021, deployed 31 December 2021
Mars 2020 Perseverance 30 July 2020[40] NASA
 United States
Rover Operational Landed on 18 February 2021[41] Atlas V 541
Ingenuity Helicopter Successful First aerodynamic flight on another planet. Landed with Perseverance rover on 18 February 2021.[42] Deployed from rover on 3 April 2021. First flight achieved on April 19, 2021.[43] Retired on 25 January 2024 due to sustained rotor blade damage.
Psyche Psyche 13 October 2023 NASA
 United States
Flyby
(Gravity assist)
Enroute Gravity assist en route to 16 Psyche in May 2026[44] Falcon Heavy

Landing locations

Mars landing sites (16 December 2020)

In 1999, Mars Climate Orbiter accidentally entered Mars' atmosphere and either burnt up or left Mars' orbit on an unknown trajectory.[citation needed]

There are a number of derelict spacecraft orbiting Mars whose location is not known precisely. There is a proposal to use the Optical Navigation Camera on the Mars Reconnaissance Orbiter to search for small moons, dust rings and old orbiters.[45] As of 2016, there were believed to be eight derelict spacecraft in orbit around Mars (barring unforeseen event).[46] The Viking 1 orbiter was not expected to decay until at least 2019.[47] Mariner 9, which entered Mars orbit in 1971, was expected to remain in orbit until approximately 2022, when it was projected to enter the Martian atmosphere and either burn up, or crash into the planet's surface.[48]

Timeline

Missions to the moons of Mars

Deimos (lower left) and Phobos (lower right) compared with the asteroid 951 Gaspra
Phobos by Mars Global Surveyor in 1998[49]

There have also have been proposed missions dedicated to explore the two moons of Mars, Phobos and Deimos. Many missions to Mars have also included dedicated observations of the moons, while this section is about missions focused solely on them. There have been three unsuccessful dedicated missions and many proposals. Because of the proximity of the Mars moons to Mars, any mission to them may also be considered a mission to Mars from some perspectives.

There have been at least three proposals in the United States Discovery Program, including PADME, PANDORA, and MERLIN.[50] The ESA has also considered a sample return mission, one of the latest known as Martian Moon Sample Return or MMSR, and it may use heritage from an asteroid sample return mission.[51]

Proposal Target Reference
Aladdin Phobos and Deimos [52]
DePhine Phobos and Deimos [53]
DSR Deimos [54]
Gulliver Deimos [55]
Hall Phobos and Deimos [56]
M-PADS Phobos and Deimos [57]
Merlin Phobos and Deimos [58]
MMSR (2011 ver.) Phobos or Deimos [51]
OSRIS-REx 2 Phobos or Deimos [59]
Pandora Phobos and Deimos [50]
PCROSS Phobos [60]
Phobos Surveyor Phobos [61]
PRIME Phobos [62]
Fobos-Grunt 2 Phobos [63]
Phootprint Phobos [64][65]
PADME Phobos and Deimos [66][67]

In Japan, the Institute of Space and Astronautical Science (ISAS) is developing a sample return mission to Phobos.[68][69] This mission is called Martian Moons eXploration (MMX)[70] and is a flagship Strategic Large Mission.[71] MMX will build on the expertise the Japan Aerospace Exploration Agency (JAXA) would gain through the Hayabusa2 and SLIM missions.[72] As of December 2023, MMX is scheduled to launch in 2026.[73]

Planned mission Target Reference
Martian Moons eXploration (MMX) Phobos and Deimos [70]

Three missions to land on Phobos have been launched; the Phobos program in the late 1980s saw the launch of Fobos 1 and Fobos 2, while the Fobos-Grunt sample return mission was launched in 2011. None of these missions were successful: Fobos 1 failed en route to Mars, Fobos 2 failed shortly before landing, and Fobos-Grunt never left low Earth orbit.

Launched mission Target Reference
Phobos 1 Phobos
Phobos 2 Phobos
Fobos-Grunt Phobos

Missions sent to the Martian system have returned data on Phobos and Deimos and missions specifically dedicated to the moons are a subset of missions Mars that often include dedicated goals to acquire data about these moons. An example of this is the imaging campaigns by Mars Express of the Mars moons.

Osiris-Rex 2 was a proposal to make OR a double mission, with the other one collecting samples from the two Mars moons.[74] In 2012, it was stated that this mission would be both the quickest and least expensive way to get samples from the Moons.[59]

The 'Red Rocks Project,' a part of Lockheed Martin's "Stepping Stones to Mars" program, proposed to explore Mars robotically from Deimos.[75][76]

Statistics

Mission milestone by country

Legend

  Achieved
  Failed attempt

Country Flyby Orbit Lander Rover Powered flight Phobos lander Phobos rover Phobos sample return
United States United States N/A N/A N/A
China China N/A N/A N/A N/A
Soviet Union Soviet Union N/A N/A
Russia Russia N/A N/A N/A
European Space Agency logo.svg ESA N/A N/A N/A N/A N/A
United Kingdom United Kingdom N/A N/A N/A N/A N/A N/A
India India N/A N/A N/A N/A N/A N/A
 United Arab Emirates N/A N/A N/A N/A N/A N/A
Japan Japan N/A N/A N/A N/A N/A N/A

Missions by organization/company

Country Agency or company Successful Partial failure Failure Operational Gravity assist Total
 United States NASA 13 - 5 4 1 23
Soviet Union Soviet Union Energia 1 6 10 - - 17
Russia Russia Roscosmos - 1 2 - - 3
European Space Agency logo.svg ESA ESA - 2 - - 1 3
 China CNSA 1 - 1 1 - 2
 India ISRO 1 - - - - 1
 United Arab Emirates UAESA 1 - - 1 - 1
 Japan ISAS - - 1 - - 1

Future missions

Under development

Mission Organization Launch Date Type
Escape and Plasma Acceleration and Dynamics Explorer mission (ESCAPADE)

Photon Blue and Gold

NASA
 United States
October 2024[77] 2 Orbiters
Mars Orbiter Mission 2 ISRO
 India
NET 2024[78][79] Orbiter[80][81]
Tianwen-2 / ZhengHe Asteroid Sample Return Mission[82] May 2025[83][84] 2027 flyby en route to 311P/PANSTARRS
Martian Moons eXploration (MMX) Phobos Sample Return Mission JAXA
 Japan
2026[73] Orbiter/Lander
First Commercial Mission to Mars Relativity Space, Impulse Space 2026 Lander[85]
SpaceX Uncrewed Landing SpaceX 2026 Lander with cargo[86]
Tianwen-3 Mars sample-return mission 2028[87] Two spacecrafts: one consists of orbiter and return module, the other lander, ascent module and a mobile sampling robot.
Expected sample return: July 2031[88]
TEREX-1[89] NICT, ISSL
 Japan
Mid 2020s Orbiter
Rosalind Franklin rover ESA
2028 Rover
SpaceX Crewed Landing SpaceX 2029 Lander with crew and cargo[90]

Proposed missions

Mission Organisation Proposed
launch
Type
MELOS rover JAXA
 Japan
2024 Rover and aircraft
SatRevolution

 Poland

2024[91][92] Orbiter
Mars-Grunt Roscosmos
 Russia
2024 Orbiter, lander, ascent vehicle, sample-return
Icebreaker Life NASA
 United States
2026 Lander
NASA-ESA Mars Sample Return NASA
 United States
European Space Agency logo.svg
ESA
NET 2030[93][94] Orbiter/Lander/Return vehicle
Next Mars Orbiter (NeMO) NASA
 United States
Late 2020s[95] Telecomm orbiter[96] (originally proposed for 2022)
Deimos and Phobos Interior Explorer (DePhine) European Space Agency logo.svg
ESA
2030 Orbiter and Martian moon flybys
Large Inflatable Fabric Environment Sierra Nevada Corporation TBD Orbital habitat in Low Mars Orbit (LMO)[97]
Mars MetNet FMI
 Finland
IKI
 Russia
INTA
 Spain
TBD Impactors
Mars Geyser Hopper NASA
 United States
TBD Hopper
Mars Micro Orbiter (MMO) NASA
 United States
? Orbiter
Phobos And Deimos & Mars Environment NASA
 United States
? Orbiter
Biological Oxidant and Life Detection (BOLD) Washington State University
 United States
? Landing probes and Impactors
Mars Exploration Ice Mapper NASA (withdrawn)[98]
 United States
Canadian Space Agency
 Canada
Italian Space Agency
 Italy
? Orbiter

Unrealized concepts

1970s

  • Mars 4NM and Mars 5NM – projects intended by the Soviet Union for heavy Marsokhod (in 1973 according to initial plan of 1970) and Mars sample return (planned for 1975). The missions were to be launched on the failed N1 rocket.[99]
  • Mars 5M (Mars-79) – double-launching Soviet sample return mission planned to 1979 but cancelled due to complexity and technical problems
  • Voyager-Mars – USA, 1970s – Two orbiters and two landers, launched by a single Saturn V rocket.

1990s

  • Vesta – the multiaimed Soviet mission, developed in cooperation with European countries for realisation in 1991–1994 but canceled due to the Soviet Union disbanding, included the flyby of Mars with delivering the aerostat and small landers or penetrators followed by flybys of 1 Ceres or 4 Vesta and some other asteroids with impact of penetrator on the one of them.
  • Mars Aerostat – Russian/French balloon part for cancelled Vesta mission and then for failed Mars 96 mission,[100] originally planned for the 1992 launch window, postponed to 1994 and then to 1996 before being cancelled.[101]
  • Mars Together, combined U.S. and Russian mission study in the 1990s. To be launched by a Molniya with possible U.S. orbiter or lander.[102][103]
  • Mars Environmental Survey – set of 16 landers planned for 1999–2009
  • Mars-98 – Russian mission including an orbiter, lander, and rover, planned for 1998 launch opportunity as repeat of failed Mars 96 mission; cancelled due to lack of funding

2000s

  • Mars Surveyor 2001 Lander – October 2001 – Mars lander (refurbished, became Phoenix lander)
  • Kitty Hawk – Mars airplane micromission, proposed for 17 December 2003, the centennial of the Wright brothers' first flight.[104] Its funding was eventually given to the 2003 Mars Network project.[105]
  • NetLander – 2007 or 2009 – Mars netlanders
  • Beagle 3 – 2009 British lander mission meant to search for life, past or present.[clarification needed]
  • Mars Telecommunications Orbiter – September 2009 – Mars orbiter for telecommunications

2010s

  • Mars One - announced in 2012, planned to land a demo lander on Mars by 2016, with a crewed landing to follow by 2023. These dates were delayed multiple times, and the project was eventually cancelled, with the company going bankrupt in 2019
  • Sky-Sailor – 2014 – Plane developed by Switzerland to take detailed pictures of Mars surface
  • Mars Astrobiology Explorer-Cacher – 2018 rover concept, cancelled due to budget cuts in 2011. Sample cache goal later moved to Mars 2020 rover.[106]
  • Red Dragon – Derivative of a Dragon 2 capsule by SpaceX, designed to land by aerobraking and retropropulsion. Planned for 2018, then 2020. Canceled in favor of the Starship system.
  • Tumbleweed rover, wind-propelled sphere[107]
NASA missions to Mars (28 September 2021)
(Perseverance rover/Ingenuity Mars Helicopter; InSight lander; Mars Reconnaissance Orbiter; Odyssey orbiter; Curiosity rover; MAVEN orbiter)

See also


References

  1. Chronology of Mars Exploration. NASA. Retrieved on 1 December 2011.
  2. "Pathfinder Rover Gets Its Name". http://mars.jpl.nasa.gov/MPF/rover/name.html. 
  3. "Russia's unmanned missions to Mars". http://www.russianspaceweb.com/spacecraft_planetary_mars.html. 
  4. 4.0 4.1 4.2 (in en) Chronology of Mars Missions. doi:10.13140/rg.2.2.29797.65768. https://www.researchgate.net/publication/328715311. 
  5. 5.0 5.1 5.2 Smith, Kiona N. (2017-05-30). "The Mariner 9 Spacecraft And The Race To Orbit Mars". https://www.forbes.com/sites/kionasmith/2017/05/30/the-mariner-9-spacecraft-and-the-race-to-mars/. 
  6. "Missions to Mars". The Planetary Society. http://www.planetary.org/explore/space-topics/space-missions/missions-to-mars.html#mars2. 
  7. NASA Space Science Data Center, Mars 2 Lander. Retrieved 11 Feb. 2021.
  8. 8.0 8.1 Perminov, V.G. (July 1999). The Difficult Road to Mars - A Brief History of Mars Exploration in the Soviet Union. NASA Headquarters History Division. pp. 34–60. ISBN 0-16-058859-6. https://archive.org/details/difficultroadtom00perm/page/34. 
  9. Webster, Guy (11 April 2013). "NASA Mars Orbiter Images May Show 1971 Soviet Lander". NASA. http://www.nasa.gov/mission_pages/MRO/news/mro2013411.html. 
  10. "Mars 3 Lander". NASA. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1971-049F. "Mars 3 was the first spacecraft to make a successful soft landing on Mars." 
  11. "The First Rover on Mars - The Soviets Did It in 1971". Planetary Society. https://www.planetary.org/articles/tpr_1990_4_anderson. "The Mars 2 and 3 rover, which landed on Mars in 1971." 
  12. 12.0 12.1 "Mars 3 Spacecraft and Subsystems, NSSDCA cat". https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1971-049F. 
  13. NASA Space Science Data Center, Mars 3 Lander. Retrieved 11 Feb. 2021.
  14. Pyle, Rod (2012). Destination Mars. Prometheus Books. pp. 73–78. ISBN 978-1-61614-589-7. "It was the first spacecraft to enter orbit around another world." 
  15. "Soviet Mars Images". http://mentallandscape.com/C_CatalogMars.htm. 
  16. NSSDC - Mars 6
  17. "Mars Pathfinder Science Results". NASA. http://mpfwww.jpl.nasa.gov/MPF/science/geology.html. 
  18. "Mars Pathfinder Welcome to Mars Sol 86 (1 October 1997) Images". 1 October 1997. https://mars.nasa.gov/MPF/ops/sol86.html. 
  19. "Nozomi - NASA Science" (in en). https://science.nasa.gov/mission/nozomi/. 
  20. A sol is the name for an Mars' day.
  21. "ESA - Beautiful new images from Rosetta's approach to Mars: OSIRIS UPDATE". Esa.int. 24 February 2007. http://www.esa.int/SPECIALS/Rosetta/SEMUDT70LYE_0.html. 
  22. Ray, Kalyan (8 February 2017). "Isro-Mars orbiter mission life extended up to 2020". Deccan Herald. https://www.deccanherald.com/content/595344/isro-mars-orbiter-mission-life.html. 
  23. Brown, Dwayne; Neal-Jones, Nancy; Zubritsky, Elizabeth (21 September 2014). "NASA's Newest Mars Mission Spacecraft Enters Orbit around Red Planet". NASA. http://www.jpl.nasa.gov/news/news.php?release=2014-318. 
  24. Clark, Stephen (24 May 2017). "Probe into crash of ESA lander recommends more checks on ExoMars descent craft". Spaceflight Now. https://spaceflightnow.com/2017/05/24/probe-into-crash-of-esa-mars-lander-recommends-more-checks-on-exomars-descent-craft/. 
  25. "Weak Simulations, Inadequate Software & Mismanagement caused Schiaparelli Crash Landing". Spaceflight101. 24 May 2017. http://spaceflight101.com/exomars/esa-completes-schiaparelli-failure-investigation/. 
  26. Chan, Sewell (20 October 2016). "No Signal From Mars Lander, but European Officials Declare Mission a Success". New York Times. https://www.nytimes.com/2016/10/21/science/space/no-signal-from-mars-lander-but-european-officials-declare-mission-a-success.html. 
  27. Wall, Mike (21 October 2016). "ExoMars '96 Percent' Successful Despite Lander Crash: ESA". Space.com. http://www.space.com/34471-exomars-mission-96-percent-successful-esa.html. 
  28. Clark, Stephen (9 March 2016). "InSight Mars lander escapes cancellation, aims for 2018 launch". Spaceflight Now. https://spaceflightnow.com/2016/03/09/insight-mars-lander-escapes-cancellation-aims-for-2018-launch/. 
  29. Chang, Kenneth (9 March 2016). "NASA Reschedules Mars InSight Mission for May 2018". New York Times. https://www.nytimes.com/2016/03/10/science/nasa-reschedules-mars-insight-mission-for-may-2018.html. 
  30. "NASA InSight – Dec. 19, 2022 – Mars InSight" (in en-US). 19 December 2022. https://blogs.nasa.gov/insight/2022/12/19/nasa-insight-dec-19-2022/. 
  31. "Live coverage: Launch of Emirates Mars Mission rescheduled for Sunday". Spaceflight Now. 14 July 2020. https://spaceflightnow.com/2020/07/14/h-2a-emirates-mars-mission-mission-status-center/. 
  32. "UAE's 'Hope' probe to be first in trio of Mars missions". Phys.Org. 7 February 2021. https://phys.org/news/2021-02-uae-probe-trio-mars-missions.html. 
  33. "UAE's Hope Probe on its Way to Glory" (in en-US). 2021-02-09. https://crosslink.ae/uaes-hope-probe-on-its-way-to-glory/. 
  34. "The UAE's Hope Probe has successfully entered orbit around Mars". cnn.com. 9 February 2021. https://www.cnn.com/2021/02/09/world/uae-hope-probe-mars-mission-orbit-scn-trnd/index.html. 
  35. Amos, Jonathan (23 July 2020). "China's Mars rover rockets away from Earth" (in en-GB). BBC News. https://www.bbc.com/news/science-environment-53504797. 
  36. "天外送祝福,月圆迎华诞——天问一号以"自拍国旗"祝福祖国71华诞". http://mp.weixin.qq.com/s?__biz=MzA3OTA2ODgxMQ==&mid=2649795427&idx=1&sn=7ef1ec1c2beb3e5a383e0f509cdf34d8&chksm=87bd2087b0caa9910166cd41bf8af32d88628c0cbaa232cb5aa93e5a4fee9913c0765b18a916#rd. 
  37. "CGNT on twitter". 14 May 2021. https://twitter.com/CGTNOfficial/status/1393365096609435648. "China's Tianwen-1 probe lands on" 
  38. "The scientific image map was unveiled, and it was a one-time tour! my country's first Mars exploration mission was a complete success". https://mp.weixin.qq.com/s/w_3t4yp7pGjSMl7CTJ1-Gw. "The picture of the "touring group photo" shows the rover traveling about 10 meters south of the landing platform, releasing the separate camera installed at the bottom of the vehicle, and then retreating to the vicinity of the landing platform." 
  39. "New Year's Day greetings-China National Space Administration releases the images returned by the Tianwen-1 probe". 1 January 2022. https://mp.weixin.qq.com/s/hUJHZD10VONAulzIXnfFtA. 
  40. "Nasa Mars rover: Perseverance launches from Florida" (in en-gb). 30 July 2020. https://www.bbc.co.uk/news/live/science-environment-53567859. 
  41. mars.nasa.gov. "Mars 2020 Perseverance Rover" (in en). https://mars.nasa.gov/mars2020/. 
  42. "Mars Helicopter". https://mars.nasa.gov/technology/helicopter/. "A technology demonstration to test the first powered flight on Mars." 
  43. First Flight of the Ingenuity Mars Helicopter: Live from Mission Control. NASA. 19 April 2021. Retrieved 19 April 2021 – via YouTube.
  44. "NASA launches a spacecraft to visit Psyche, an unseen metal world". October 13, 2023. https://amp.cnn.com/cnn/2023/10/13/world/psyche-metal-asteroid-nasa-launch-scn/index.html. 
  45. Adler, Mark; Owen, W.; Riedel, J.. "Concepts and Approaches for Mars Exploration (2012)". https://www.lpi.usra.edu/meetings/marsconcepts2012/pdf/4337.pdf. 
  46. "A Chronology of Mars Exploration". https://history.nasa.gov/marschro.htm. 
  47. "Viking 1 Orbiter". https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1975-075A. 
  48. NASA - This Month in NASA History: Mariner 9, 29 November 2011 – Vol. 4, Issue 9
  49. "JPL". http://www.jpl.nasa.gov/releases/98/mgsphobos.html. 
  50. 50.0 50.1 MERLIN: The Creative Choices Behind a Proposal to Explore the Martian Moons (Merlin and PADME info also)
  51. 51.0 51.1 Michel, P.; Agnolon, D.; Brucato, J.; Gondet, B.; Korablev, O.; Koschny, D.; Schmitz, N.; Willner, K. et al. (2 October 2011). "MMSR - a study for a Martian Moon Sample Return mission". Astrophysics Data System 2011: 849. Bibcode2011epsc.conf..849M. https://ui.adsabs.harvard.edu/abs/2011epsc.conf..849M/abstract. Retrieved 12 February 2021. 
  52. "ALADDIN: PHOBOS-DEIMOS SAMPLE RETURN". https://www.lpi.usra.edu/meetings/lpsc97/pdf/1113.PDF. 
  53. DePhine: The Deimos and Phobos Interior Explorer. (PDF) Jurgen Oberst, Kai Wickhusen, Konrad Willner, Klaus Gwinner, Sofya Spiridonova, Ralph Kahle, Andrew Coates, Alain Herique, Dirk Plettemeier, Marina Dıaz-Michelena, Alexander Zakharo, Yoshifumi Futaana, Martin Patzold, Pascal Rosenblatt, David J. Lawrence, Valery Lainey, Alison Gibbings, Ingo Gerth. Advances in Space Research. Volume 62, Issue 8. pp: 2220-2238. 15 October 2018. doi:10.1016/j.asr.2017.12.028
  54. Renton, D.C (26 April 2005). "SMALL BODY SAMPLE RETURN TO DEIMOS". https://sci.esa.int/web/future-missions-department/-/37067-small-body-sample-return-to-deimos. 
  55. Britt, D.. "The Gulliver Mission: Sample Return from Deimos". https://meetings.copernicus.org/epsc2010/abstracts/EPSC2010-463.pdf. 
  56. P. Lee, et al. - Hall: A Phobos and Deimos Sample Return Mission
  57. Mars Phobos and Deimos Survey (M-PADS)–A Martian Moons Orbiter and Phobos Lander (Ball, Andrew J.; Price, Michael E.; Walker, Roger J.; Dando, Glyn C.; Wells, Nigel S. and Zarnecki, John C. (2009). Mars Phobos and Deimos Survey (M-PADS)–A Martian Moons Orbiter and Phobos Lander. Advances in Space Research, 43(1), pp. 120–127.)
  58. Murchie, S.; Eng, D.; Chabot, N.; Guo, Y.; Arvidson, R.; Yen, A.; Trebi-Ollennu, A.; Seelos, F. et al. (2014). "MERLIN: Mars-Moon Exploration, Reconnaissance and Landed Investigation". Acta Astronautica 93: 475–482. doi:10.1016/j.actaastro.2012.10.014. Bibcode2014AcAau..93..475M. 
  59. 59.0 59.1 Elifritz, T.L (2012). "OSIRIS-REx II to Mars — Mars Sample Return from Phobos and Deimos". Astrophysics Data System 1679: 4017. Bibcode2012LPICo1679.4017E. https://ui.adsabs.harvard.edu/abs/2012LPICo1679.4017E/abstract. Retrieved 12 February 2021. 
  60. PCROSS, Phobos Close Rendevous [sic] Observation Sensing Satellite, Colaprete, A, et al.
  61. Fischer, Maria (16 January 2013). "Mothership and her Hedgehogs: New Concept for Exploring Phobos". http://www.spacesafetymagazine.com/space-exploration/deep-space/mothership-hedgehogs-concept-exploring-phobos/. 
  62. PRIME
  63. Pultarova, Tereza (22 October 2012). "Phobos-Grunt 2 Bound for Launch in 2020, Russians Confirmed While Celebrating Sputnik". http://www.spacesafetymagazine.com/space-debris/phobos-grunt/phobos-grunt-2-bound-launch-2020-russians-confirmed-celebrating-sputnik/. 
  64. Barraclough, Simon; Ratcliffe, Andrew; Buchwald, Robert; Scheer, Heloise; Chapuy, Marc; Garland, Martin (16 June 2014). "Phootprint: A European Phobos Sample Return Mission". 11th International Planetary Probe Workshop. Airbus Defense and Space. http://solarsystem.nasa.gov/docs/03_Phootprint_A%20European%20Phobos%20Sample%20Return%20Mission_Ratcliffe.pdf. Retrieved 22 December 2015. 
  65. Koschny, Detlef; Svedhem, Håkan; Rebuffat, Denis (2 August 2014). "Phootprint - A Phobos sample return mission study". ESA 40: B0.4–9–14. Bibcode2014cosp...40E1592K. 
  66. Lee, Pascal; Bicay, Michael; Colapre, Anthony; Elphic, Richard (17–21 March 2014). "Phobos And Deimos & Mars Environment (PADME): A LADEE-Derived Mission to Explore Mars's Moons and the Martian Orbital Environment.". 45th Lunar and Planetary Science Conference (2014). http://www.hou.usra.edu/meetings/lpsc2014/pdf/2288.pdf. 
  67. Reyes, Tim (1 October 2014). "Making the Case for a Mission to the Martian Moon Phobos". Universe Today. http://www.universetoday.com/114871/making-the-case-for-a-mission-to-the-martian-moon-phobos/. 
  68. "Introduction to JAXA's Exploration of the Two Moons of Mars, with Sample Return from Phobos" (PDF). Phobos/Deimos Sample Return Mission Study Team. 26 October 2015. http://www.elsi.jp/ja/research/docs/Introduction-PDSR-IntlRv-151102.pdf#page=22. 
  69. "JAXA、火星衛星「フォボス」探査…22年に" (in ja). The Yomiuri Shimbun. 4 January 2016. http://www.yomiuri.co.jp/science/20160104-OYT1T50063.html. 
  70. 70.0 70.1 "ISASニュース 2016.1 No.418" (in ja) (PDF). Institute of Space and Astronautical Science. 22 January 2016. http://www.isas.jaxa.jp/j/isasnews/backnumber/2016/ISASnews418.pdf#page=3. 
  71. "Error: no |title= specified when using {{Cite web}}" (in ja) (PDF). Japanese Aerospace Exploration Agency. 13 October 2015. http://www8.cao.go.jp/space/comittee/27-kagaku/kagaku-dai3/siryou4-3.pdf#page=2. 
  72. Torishima, Shinya (19 June 2015). "JAXAの「火星の衛星からのサンプル・リターン」計画とは" (in ja). Mynavi News. http://news.mynavi.jp/series/jaxa_mars/001/. 
  73. 73.0 73.1 "Japan to Delay Mars Moon Exploration by 2 Years to 2026". Yomiuri Shimbun. 6 December 2023. https://japannews.yomiuri.co.jp/science-nature/science/20231206-154061/. 
  74. Elifritz, T.L. "OSIRIS-REx II to Mars - Mars Sample Return from Phobos and Deimos - A Mars Mission Proposal". https://www.lpi.usra.edu/meetings/marsconcepts2012/pdf/4017.pdf. 
  75. Larry Page Deep Space Exploration - Stepping Stones builds up to "Red Rocks : Explore Mars from Deimos"
  76. David, Leonard (20 April 2011). "One Possible Small Step Toward Mars Landing: A Martian Moon". https://www.space.com/11437-mars-moons-exploration-astronauts-red-rocks.html. 
  77. Sanders, Robert (23 August 2021). "'Blue' and 'Gold' satellites headed to Mars in 2024". UC Berkeley. https://news.berkeley.edu/2021/08/23/blue-and-gold-satellites-headed-to-mars-in-2024/. 
  78. "Episode 90 – An update on ISRO's activities with S Somanath and R Umamaheshwaran". AstrotalkUK. 24 October 2019. https://astrotalkuk.org/episode-90-an-update-on-isros-activities-with-s-somanath-and-r-umamaheshwaran/. 
  79. Jatiya, Satyanarayan (18 July 2019). "Rajya Sabha Unstarred Question No. 2955". https://164.100.158.235/question/annex/249/Au2955.pdf.  [|permanent dead link|dead link}}] Alt URL
  80. "India's next Mars mission likely to be an orbiter" (in en). https://www.theweek.in/news/sci-tech/2021/02/19/indias-next-mars-mission-likely-to-be-an-orbiter.html. 
  81. "Isro says India's second Mars mission Mangalyaan-2 will be an orbiter mission" (in en). February 20, 2021. https://www.indiatoday.in/science/story/isro-says-india-s-second-mars-mission-mangalyaan-2-will-be-an-orbiter-mission-1771140-2021-02-20. 
  82. Jones, Andrew (18 May 2021). "China to launch Tianwen 2 asteroid-sampling mission in 2025". Space.com. https://www.space.com/china-tianwen2-asteroid-sampling-mission-2025-launch. 
  83. Jones, Andrew (10 August 2021). "China Plans Near-Earth Asteroid Smash-and-Grab". spectrum.ieee.org. https://spectrum.ieee.org/china-plans-near-earth-asteroid-smash-and-grab/. 
  84. Zhang, Xiaojing; Huang, Jiangchuan; Wang, Tong; Huo, Zhuoxi (18–22 March 2019). "ZhengHe – A Mission to a Near-Earth Asteroid and a Main Belt Comet". 50th Lunar and Planetary Science Conference. https://www.hou.usra.edu/meetings/lpsc2019/pdf/1045.pdf. Retrieved 4 June 2019. 
  85. Foust, Jeff (24 May 2023). "Impulse and Relativity target 2026 for launch of first Mars lander mission". https://spacenews.com/impulse-and-relativity-target-2026-for-launch-of-first-mars-lander-mission/. 
  86. Chang, Kenneth (13 October 2023). "Elon Musk Says SpaceX Could Land on Mars in 3 to 4 Years". https://www.nytimes.com/2023/10/05/science/elon-musk-spacex-starship-mars.html. 
  87. Jones, Andrew (20 June 2022). "China aims to bring Mars samples to Earth 2 years before NASA, ESA mission". spacenews.com. https://spacenews.com/china-aims-to-bring-mars-samples-to-earth-2-years-before-nasa-esa-mission/. 
  88. Jones, Andrew (30 June 2021). "China outlines space plans to 2025". spacenews.com. https://spacenews.com/china-outlines-space-plans-to-2025/. 
  89. "Error: no |title= specified when using {{Cite web}}" (in ja). National Institute of Information and Communications Technology. 25 January 2017. http://www.soumu.go.jp/main_content/000462914.pdf. 
  90. Torchinsky, Rina (17 March 2022). "Elon Musk hints at a crewed mission to Mars in 2029". https://www.npr.org/2022/03/17/1087167893/elon-musk-mars-2029. 
  91. Henry, Caleb (24 October 2019). "Virgin Orbit to add extra rocket stage to LauncherOne for interplanetary missions". SpaceNews. https://spacenews.com/virgin-orbit-to-add-extra-rocket-stage-to-launcherone-for-interplanetary-missions/. 
  92. O'Callaghan, Jonathan (9 October 2019). "Virgin Orbit Is Planning An Ambitious Mission To Mars In 2022". Forbes. https://www.forbes.com/sites/jonathanocallaghan/2019/10/09/virgin-orbit-is-planning-an-ambitious-mission-to-mars-in-2022/. 
  93. Foust, Jeff (21 September 2023). "NASA Mars Sample Return budget and schedule "unrealistic," independent review concludes". spacenews.com. https://spacenews.com/nasa-mars-sample-return-budget-and-schedule-unrealistic-independent-review-concludes/. 
  94. Foust, Jeff (28 March 2022). "NASA to delay Mars Sample Return, switch to dual-lander approach". spacenews.com. https://spacenews.com/nasa-to-delay-mars-sample-return-switch-to-dual-lander-approach/. 
  95. Clark, Stephen (9 April 2018). "NASA is counting on long-lived Mars orbiter lasting another decade". Spaceflight Now. https://spaceflightnow.com/2018/04/09/nasa-is-counting-on-long-lived-mars-orbiter-lasting-another-decade/. 
  96. Stephen, Clark (3 March 2015). "NASA eyes ion engines for Mars orbiter launching in 2022". Space Flight Now. http://spaceflightnow.com/2015/03/03/nasa-eyes-ion-engines-for-mars-orbiter-launching-in-2022/. 
  97. Pearlman, Robert Z. (22 August 2019). "Inside Sierra Nevada's Inflatable Space Habitat for Astronauts in Lunar Orbit (Photos)". https://www.space.com/sierra-nevada-inflatable-habitat-moon-gateway.html. 
  98. Foust, Jeff (28 March 2022). "White House requests $26 billion for NASA for 2023". spacenews.com. https://spacenews.com/white-house-requests-26-billion-for-nasa-for-2023/. 
  99. Советский грунт с Марса (in Russian). novosti-kosmonavtiki.ru
  100. C. Tarrieu, "Status of the Mars 96 Aerostat Development", Paper IAF-93-Q.3.399, 44th Congress of the International Astronautical Federation, 1993.
  101. P.B. de Selding, "Planned French Balloon May Be Dropped", Space News, 17–23 April 1995, pp. 1, 20
  102. "Mars Together Update". http://mars.nasa.gov/MPF//martianchronicle/martianchron5/marstog5.html. 
  103. "Mars Together: An Update". http://mars.nasa.gov/MPF//martianchronicle/martianchron3/marschro34.html. 
  104. Oliver Morton in To Mars, En Masse, pp. 1103–04, Science (Magazine) vol. 283, 19 February 1999, ISSN 0036-8075
  105. MIT Mars Airplane Project. Marsnews.com. Retrieved on 14 August 2012.
  106. O'Rourke, Joseph (9 September 2014). "Instruments selected for Mars 2020, NASA's latest rover". https://astrobites.org/2014/09/09/mars-2020/. 
  107. Exploring Mars: Blowing in the Wind? Jpl.nasa.gov (10 August 2001). Retrieved on 2012-08-14.




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Astronomy:List_of_missions_to_Mars
8 views | Status: cached on July 19 2024 21:58:19
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF