Short description: Planetary objects without a planetary system
File:Artist's impression of the free-floating planet CFBDSIR J214947.2-040308.9.ogv
A rogue (alternately interstellar, nomad, orphan, starless, unbound, or wandering) planet, also termed a free-floating planet (FFP) or an isolated planetary-mass object (iPMO), is an interstellar object of planetary mass which is not gravitationally bound to any star or brown dwarf.[1][2][3][4]
Rogue planets may originate from planetary systems in which they are formed and later ejected, or they can also form on their own, outside a planetary system. The Milky Way alone may have billions to trillions of rogue planets, a range the upcoming Nancy Grace Roman Space Telescope will likely be able to narrow.[5][6]
Some planetary-mass objects may have formed in a similar way to stars, and the International Astronomical Union has proposed that such objects be called sub-brown dwarfs.[7] A possible example is Cha 110913−773444, which may either have been ejected and become a rogue planet or formed on its own to become a sub-brown dwarf.[8]
Name
The two first discovery papers use the names isolated planetary-mass objects (iPMO)[9] and free-floating planets (FFP).[10] Most astronomical papers use one of these terms.[11][12][13] The term rogue planet is more often used for microlensing studies, which also often uses the term FFP.[14][15] A press-release intended for the public might use an alternative name. The discovery of at least 70 FFPs in 2021, for example, used the terms rogue planet,[16] starless planet,[17] wandering planet[18] and free-floating planet[19] in different press-releases.
Discovery
Isolated planetary-mass objects (iPMO) were first discovered in 2000 by the United Kingdom team Lucas & Roche with UKIRT in the Orion Nebula.[10] In the same year the Spain team Zapatero Osorio et al. discovered iPMOs with Keck spectroscopy in the σ Orionis cluster.[9] The spectroscopy of the objects in the Orion Nebula was published in 2001.[20] Both European teams are now recognized for their quasi-simultaneous discoveries.[21] In the year 1999 the Japan team Oasa et al. discovered objects in Chamaeleon I[22] that were spectroscopically confirmed years later in 2004 by the United States team Luhman et al.[23]
In October 2023, astronomers, based on observations of the Orion Nebula with the James Webb Space Telescope, reported the discovery of pairs of rogue planets, similar in mass to the planet Jupiter, and called JuMBOs (short for Jupiter Mass Binary Objects).[24][25]
Observation
115 potential rogue planets in the region between Upper Scorpius and Ophiuchus (2021)
There are two techniques to discover free-floating planets: direct imaging and microlensing.
Microlensing
Astrophysicist Takahiro Sumi of Osaka University in Japan and colleagues, who form the Microlensing Observations in Astrophysics and the Optical Gravitational Lensing Experiment collaborations, published their study of microlensing in 2011. They observed 50 million stars in the Milky Way by using the 1.8-metre (5 ft 11 in) MOA-II telescope at New Zealand's Mount John Observatory and the 1.3-metre (4 ft 3 in) University of Warsaw telescope at Chile's Las Campanas Observatory. They found 474 incidents of microlensing, ten of which were brief enough to be planets of around Jupiter's size with no associated star in the immediate vicinity. The researchers estimated from their observations that there are nearly two Jupiter-mass rogue planets for every star in the Milky Way.[26][27][28] One study suggested a much larger number, up to 100,000 times more rogue planets than stars in the Milky Way, though this study encompassed hypothetical objects much smaller than Jupiter.[29] A 2017 study by Przemek Mróz of Warsaw University Observatory and colleagues, with six times larger statistics than the 2011 study, indicates an upper limit on Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star in the Milky Way.[30]
In September 2020, astronomers using microlensing techniques reported the detection, for the first time, of an Earth-mass rogue planet (named OGLE-2016-BLG-1928) unbound to any star and free floating in the Milky Way galaxy.[15][31][32]
In December 2013, a candidate exomoon of a rogue planet (MOA-2011-BLG-262) was announced.[14]
Direct imaging
The cold planetary-mass object WISE J0830+2837 (marked orange object) observed with the
Spitzer Space Telescope. It has a temperature of 300-350
K (27-77
°C; 80-170
°F)
Microlensing planets can only be studied by the microlensing event, which makes the characterization of the planet difficult. Astronomers therefore turn to isolated planetary-mass objects (iPMO) that were found via the direct imaging method. To determine a mass of a brown dwarf or iPMO one needs for example the luminosity and the age of an object.[33] Determining the age of a low-mass object has proven to be difficult. It is no surprise that the vast majority of iPMOs are found inside young nearby star-forming regions of which astronomers know their age. These objects are younger than 200 Myrs, are massive (>5 |♃|J}}}}}})[4] and belong to the L- and T-dwarfs.[34][35] There is however a small growing sample of cold and old Y-dwarfs that have estimated masses of 8-20 MJ.[36] Nearby rogue planet candidates of spectral type Y include WISE 0855−0714 at a distance of 7.27±0.13 light-years.[37] If this sample of Y-dwarfs can be characterized with more accurate measurements or if a way to better characterize their ages can be found, the number of old and cold iPMOs will likely increase significantly.
The first iPMOs were discovered in the early 2000s via direct imaging inside young star-forming regions.[38][9][20] These iPMOs found via direct imaging formed probably like stars (sometimes called sub-brown dwarf). There might be iPMOs that form like a planet, which are then ejected. These objects will however be kinematically different from their natal star-forming region, should not be surrounded by a circumstellar disk and have high metallicity.[21] None of the iPMOs found inside young star-forming regions show a high velocity compared to their star-forming region. For old iPMOs the cold WISE J0830+2837[39] shows a Vtan of about 100 km/s, which is high, but still consistent with formation in our galaxy. For WISE 1534–1043[40] one alternative scenario explains this object as an ejected exoplanet due to its high Vtan of about 200 km/s, but its color suggests it is an old metal-poor brown dwarf. Most astronomers studying massive iPMOs believe that they represent the low-mass end of the star-formation process.[21]
Astronomers have used the Herschel Space Observatory and the Very Large Telescope to observe a very young free-floating planetary-mass object, OTS 44, and demonstrate that the processes characterizing the canonical star-like mode of formation apply to isolated objects down to a few Jupiter masses. Herschel far-infrared observations have shown that OTS 44 is surrounded by a disk of at least 10 Earth masses and thus could eventually form a mini planetary system.[41] Spectroscopic observations of OTS 44 with the SINFONI spectrograph at the Very Large Telescope have revealed that the disk is actively accreting matter, similar to the disks of young stars.[41]
Jupiter-Mass Binary Objects
JuMBO 31 to 35 in the Orion Nebula with NIRCam
In the Orion Nebula a population of 40 wide binaries and 2 triple systems were discovered. This was surprising for two reasons: The trend of binaries of brown dwarfs predicted a decrease of distance between low mass objects with decreasing mass. It was also predicted that the binary fraction decreases with mass. These binaries were coined Jupiter-Mass Binary Objects (JuMBOs), They make up at least 9% of the iPMOs and have a separation smaller than 340 AU. It is unclear how these JuMBOs might have formed. If they formed like stars, then there must be an unknown "extra ingredient" to allow them to form. If they formed like planets and were later ejected, then it has to be explained why these binaries did not break apart during the ejection process.[25] Future proper motion measurements with JWST might resolve if these objects formed as ejected planets or as stars. Ejected planets should show a high proper motion, while a formation like stars should show proper motions similar to the Trapezium Cluster stars.
Other suspected JuMBOs are known outside the Orion Nebula, such as 2MASS J11193254–1137466 AB, 2MASS J1553022+153236AB,[42][43] WISE 1828+2650, WISE J0336−0143 (could also be BD+PMO binary) and 2MASS J0013−1143.
Total Number of known iPMOs
There are likely hundreds[44][25] of known candidate iPMOs, over a hundred[45][46][47] objects with spectra and a small but growing number of candidates discovered via microlensing. Some large surveys include:
As of December 2021, the largest ever group of rogue planets was discovered, numbering at least 70 and up to 170 depending on the assumed age. They are found in the OB association between Upper Scorpius and Ophiuchus with masses between 4 and 13 |♃|J}}}}}} and age around 3 to 10 million years, and were most likely formed by either gravitational collapse of gas clouds, or formation in a protoplanetary disk followed by ejection due to dynamical instabilities.[44][16][48][18] Follow-up observations with spectroscopy from the Subaru Telescope and Gran Telescopio Canarias showed that the contamination of this sample is quite low (≤6%). The 16 young objects had a mass between 3 and 14 MJ, confirming that they are indeed planetary-mass objects.[47]
In October 2023 an even larger group of 540 planetary-mass object candidates were discovered in the Trapezium Cluster and inner Orion Nebula with JWST. The objects have a mass between 13 and 0.6 MJ. A surprising number of these objects formed wide binaries, which was not predicted previously.[25]
Formation
There are in general two scenarios that can lead to the formation of an isolated planetary-mass object (iPMO). It can form like a planet around a star and is then ejected, or it forms like a low-mass star or brown dwarf in isolation. This can influence its composition and motion.[21]
Formation like a star
- Main page: Astronomy:Sub-brown dwarf
Objects with a mass of at least one Jupiter mass were thought to be able to form via collapse and fragmentation of molecular clouds from models in 2001.[49] Pre-JWST observations have shown that objects below 3-5 MJ are unlikely to form on their own.[4] Observations in 2023 in the Trapezium Cluster with JWST have shown that objects as massive as 0.6 MJ might form on their own, not requiring a steep cut-off mass.[25] A particular type of globule, called globulettes, are thought to be birthplaces for brown dwarfs and planetary-mass objects. Globulettes are found in the Rosette Nebula and IC 1805.[50] Sometimes young iPMOs are still surrounded by a disk that could form exomoons. Due to the tight orbit of this type of exomoon around their host planet, they have a high chance of 10-15% to be transiting.[51]
Disks
Some very young star-forming regions, typically younger than 5 million years, sometimes contain isolated planetary-mass objects with infrared excess and signs of accretion. Most well known is the iPMO OTS 44 discovered to have a disk and being located in Chamaeleon I. Charmaeleon I and II have other candidate iPMOs with disks.[52][53][34] Other star-forming regions with iPMOs with disks or accretion are Lupus I,[53] Rho Ophiuchi Cloud Complex,[54] Sigma Orionis cluster,[55] Orion Nebula,[56] Taurus,[54][57] NGC 1333[58] and IC 348.[59] A large survey of disks around brown dwarfs and iPMOs with ALMA found that these disks are not massive enough to form earth-mass planets. There is still the possibility that the disks already have formed planets.[54] Studies of red dwarfs have shown that some have gas-rich disks at an relative old age. These disks were dubbed Peter Pan Disks and this trend could continue into the planetary-mass regime. One Peter Pan disk is the 45 Myr old brown dwarf 2MASS J02265658-5327032 with a mass of about 13.7 MJ, which is close to the planetary-mass regime.[60]
Formation like a planet
Ejected planets are predicted to be mostly low-mass (<30 M⊕ Figure 1 Ma et al.)[61] and their mean mass depends on the mass of their host star. Simulations by Ma et al.[61] did show that 17.5% of 1 M☉ stars eject a total of 16.8 M⊕ per star with a typical (median) mass of 0.8 M⊕ for an individual free-floating planet (FFP). For lower mass red dwarfs with a mass of 0.3 M☉ 12% of stars eject a total of 5.1 M⊕ per star with a typical mass of 0.3 M⊕ for an individual FFP.
Hong et al.[62] predicted that exomoons can be scattered by planet-planet interactions and become ejected exomoons.
Higher mass (0.3-1 MJ) ejected FFP are predicted to be possible, but they are also predicted to be rare.[61]
Fate
Most isolated planetary-mass objects will float in interstellar space forever.
Some iPMOs will have a close encounter with a planetary system. This rare encounter can have three outcomes: The iPMO will remain unbound, it could be weakly bound to the star, or it could "kick out" the exoplanet, replacing it. Simulations have shown that the vast majority of these encounters result in a capture event with the iPMO being weakly bound with a low gravitational binding energy and an elongated highly eccentric orbit. These orbits are not stable and 90% of these objects gain energy due to planet-planet encounters and are ejected back into interstellar space. Only 1% of all stars will experience this temporary capture.[63]
Warmth
Artist's conception of a Jupiter-size rogue planet.
Interstellar planets generate little heat and are not heated by a star.[64] However, in 1998, David J. Stevenson theorized that some planet-sized objects adrift in interstellar space might sustain a thick atmosphere that would not freeze out. He proposed that these atmospheres would be preserved by the pressure-induced far-infrared radiation opacity of a thick hydrogen-containing atmosphere.[65]
During planetary-system formation, several small protoplanetary bodies may be ejected from the system.[66] An ejected body would receive less of the stellar-generated ultraviolet light that can strip away the lighter elements of its atmosphere. Even an Earth-sized body would have enough gravity to prevent the escape of the hydrogen and helium in its atmosphere.[65] In an Earth-sized object the geothermal energy from residual core radioisotope decay could maintain a surface temperature above the melting point of water,[65] allowing liquid-water oceans to exist. These planets are likely to remain geologically active for long periods. If they have geodynamo-created protective magnetospheres and sea floor volcanism, hydrothermal vents could provide energy for life.[65] These bodies would be difficult to detect because of their weak thermal microwave radiation emissions, although reflected solar radiation and far-infrared thermal emissions may be detectable from an object that is less than 1,000 astronomical units from Earth.[67] Around five percent of Earth-sized ejected planets with Moon-sized natural satellites would retain their satellites after ejection. A large satellite would be a source of significant geological tidal heating.[68]
List
The table below lists rogue planets, confirmed or suspected, that have been discovered. It is yet unknown whether these planets were ejected from orbiting a star or else formed on their own as sub-brown dwarfs. Whether exceptionally low-mass rogue planets (such as OGLE-2012-BLG-1323 and KMT-2019-BLG-2073) are even capable of being formed on their own is currently unknown.
Discovered via direct imaging
These objects were discovered with the direct imaging method. Many were discovered in young star-clusters or stellar associations and a few old are known (such as W0855). List is sorted after discovery year.
Exoplanet
|
Mass
(|♃|J}}}}}})
|
Age
(Myr)
|
Distance
(ly)
|
Spectral type
|
Status
|
Stellar assoc. membership
|
Discovery
|
OTS 44 |
11.5~ |
0.5–3 |
554
|
M9.5 |
Likely a low-mass brown dwarf[38]
|
Chamaeleon I |
1998
|
S Ori 52 |
2–8 |
1–5 |
1,150
|
|
Age and mass uncertain; may be a foreground brown dwarf
|
σ Orionis cluster |
2000[9]
|
Proplyd 061-401
|
~11
|
1
|
1,344
|
L4–L5
|
Candidate, 15 candidates in total from this work
|
Orion nebula
|
2001[20]
|
S Ori 70 |
3 |
3 |
1150
|
T6 |
interloper?[21]
|
σ Orionis cluster |
2002
|
Cha 110913-773444 |
5–15 |
2~ |
529
|
>M9.5 |
Candidate
|
Chamaeleon I |
2004[69]
|
SIMP J013656.5+093347 |
11-13 |
200~ |
20-22
|
T2.5 |
Candidate
|
UGPS J072227.51−054031.2 |
0.66–16.02[70][71] |
1000 – 5000 |
13
|
T9 |
Mass uncertain
|
none |
2010
|
M10-4450 |
2–3 |
1 |
325
|
T |
Candidate
|
rho Ophiuchi cloud |
2010[72]
|
WISE 1828+2650
|
3–6 or 0.5–20[73]
|
2–4 or 0.1–10[73]
|
47
|
>Y2
|
candidate, could be binary
|
none
|
2011
|
CFBDSIR 2149−0403 |
4–7 |
110–130 |
117–143
|
T7 |
Candidate
|
AB Doradus moving group |
2012[74]
|
SONYC-NGC1333-36
|
~6
|
1
|
978
|
L3
|
candidate, NGC 1333 has two other objects with masses below 15 MJ
|
NGC 1333
|
2012[75]
|
SSTc2d J183037.2+011837
|
2–4
|
3
|
848–1354
|
T?
|
Candidate, also called ID 4
|
Serpens Core cluster[76] (in the Serpens Cloud)
|
2012[11]
|
PSO J318.5−22 |
6.24–7.60[70][71] |
21–27 |
72.32
|
L7 |
Confirmed; also known as 2MASS J21140802-2251358
|
Beta Pictoris Moving group |
2013[13][77]
|
2MASS J2208+2921 |
11–13 |
21–27 |
115
|
L3γ |
Candidate; radial velocity needed
|
Beta Pictoris Moving group |
2014[78]
|
WISE J1741-4642 |
4–21 |
23–130 |
|
L7pec |
Candidate
|
Beta Pictoris or AB Doradus moving group |
2014[79]
|
WISE 0855−0714 |
3–10 |
>1,000
|
7.1
|
Y4 |
Age uncertain, but old due to solar vicinity object;[80] candidate even for an old age of 12 Gyrs (age of the universe is 13.8 Gyrs)
|
none |
2014[81]
|
2MASS J12074836–3900043 |
~15[82] |
7–13 |
200
|
L1 |
Candidate; distance needed
|
TW Hydrae association |
2014[83]
|
SIMP J2154–1055 |
9–11 |
30–50 |
63
|
L4β |
Age questioned[84]
|
Argus association |
2014[85]
|
SDSS J111010.01+011613.1 |
10.83–11.73[70][71] |
110–130 |
63
|
T5.5 |
Confirmed[70]
|
AB Doradus moving group |
2015[35]
|
2MASS J11193254–1137466 AB |
4–8 |
7–13 |
~90
|
L7 |
Binary candidate, one of the components has a candidate exomoon or variable atmosphere[51]
|
TW Hydrae Association |
2016[86]
|
WISEA 1147 |
5–13 |
7–13 |
~100
|
L7 |
Candidate
|
TW Hydrae Association |
2016[12]
|
USco J155150.2-213457
|
8–10
|
6.907-10
|
104
|
L6
|
Candidate, low gravity
|
Upper Scorpius association
|
2016[87]
|
Proplyd 133-353
|
<13
|
1
|
1,344
|
M9.5
|
Candidate with a photoevaporating disk
|
Orion Nebula
|
2016[56]
|
Cha J11110675-7636030
|
3–6
|
1–3
|
520–550
|
M9–L2
|
Candidate, but could be surrounded by a disk, which could make it a sub-brown dwarf; other candidates from this work
|
Chamaeleon I
|
2017[34]
|
PSO J077.1+24
|
6
|
1–2
|
470
|
L2
|
Candidate, work also published another candidate in Taurus
|
Taurus Molecular Cloud
|
2017[88]
|
Calar 25
|
11–12
|
120
|
435
|
|
Confirmed
|
Pleiades
|
2018[89]
|
2MASS J1324+6358
|
10.7–11.8
|
~150
|
~33
|
T2
|
unusually red and unlikely binary; robust candidate[70][71]
|
AB Doradus moving group
|
2007, 2018[90]
|
WISE J0830+2837
|
4-13
|
>1,000
|
31.3-42.7
|
>Y1
|
Age uncertain, but old because of high velocity (high Vtan is indicative of an old stellar population), Candidate if younger than 10 Gyrs
|
none
|
2020[39]
|
2MASS J0718-6415
|
3 ± 1
|
16-28
|
30.5
|
T5
|
Candidate member of the BPMG. Extremely short rotation period of 1.08 hours, comparable to the brown dwarf 2MASS J0348-6022.[91][92]
|
Beta Pictoris moving group
|
2021
|
DANCe J16081299-2304316
|
3.1–6.3
|
3–10
|
104
|
L6
|
One of at least 70 candidates published in this work, spectrum similar to HR 8799c
|
Upper Scorpius association
|
2021[44][47]
|
WISE J2255−3118
|
2.15–2.59
|
24
|
~45
|
T8
|
very red, candidate[70][71]
|
Beta Pictoris moving group
|
2011,2021[46]
|
WISE J024124.73-365328.0
|
4.64–5.30
|
45
|
~61
|
T7
|
candidate[70][71]
|
Argus association
|
2012, 2021[46]
|
2MASS J0013−1143
|
7.29–8.25
|
45
|
~82
|
T4
|
binary candidate or composite atmosphere, candidate[70][71]
|
Argus association
|
2017, 2021[46]
|
SDSS J020742.48+000056.2
|
7.11–8.61
|
45
|
~112
|
T4.5
|
candidate[70][71]
|
Argus association
|
2002, 2021[46]
|
2MASSI J0453264-175154
|
12.68–12.98
|
24
|
~99
|
L2.5β
|
low gravity, candidate[70][71]
|
Beta Pictoris moving group
|
2003, 2023[70][71]
|
CWISE J0506+0738
|
7 ± 2
|
22
|
104
|
L8γ–T0γ
|
Candidate member of the BPMG. Extreme red near-infrared colors.[93]
|
Beta Pictoris moving group
|
2023
|
Discovered via microlensing
These objects were discovered via microlensing. Rogue planets discovered via microlensing can only be studied by the lensing event and are often also consistent with exoplanets in a wide orbit around an unseen star.[94]
Exoplanet
|
Mass ([[Astronomy:Jupiter mass |
J}}}}}}]])
|
Mass (M⊕)
|
Distance (ly)
|
Status
|
Discovery
|
MOA-2011-BLG-262L
|
115 or 3.6
|
36,550 or 1,144
|
1,800 or 23,000
|
likely a red dwarf
|
2013
|
OGLE-2012-BLG-1323
|
0.0072–0.072
|
2.3–23
|
|
candidate; distance needed
|
2017[95][96][97][98]
|
OGLE-2017-BLG-0560
|
1.9–20
|
604–3,256
|
|
candidate; distance needed
|
2017[96][97][98]
|
MOA-2015-BLG-337L
|
9.85
|
3,130
|
23,156
|
may be a binary brown dwarf instead
|
2018[99]
|
KMT-2019-BLG-2073
|
0.19
|
59
|
|
candidate; distance needed
|
2020[100]
|
OGLE-2016-BLG-1928
|
0.001-0.006
|
0.3–2
|
30,000–180,000
|
candidate
|
2020[94]
|
OGLE-2019-BLG-0551
|
0.0242-0.3
|
7.69–95
|
|
Poorly characterized[101]
|
2020[101]
|
VVV-2012-BLG-0472L
|
10.5
|
3,337
|
3,200
|
|
2022[102]
|
MOA-9y-770L
|
0.07
|
22.3+42.2 −17.4
|
22,700
|
|
2023[103]
|
MOA-9y-5919L
|
0.0012 or 0.0024
|
0.37+1.11 −0.27 or 0.75+1.23 −0.46
|
14,700 or 19,300
|
|
2023[103]
|
See also
- Rogue extragalactic planets – Rogue planets that are outside the Milky Way galaxy
- Astronomy:Intergalactic star – Star not gravitationally bound to any galaxy
- Melancholia – 2011 science fiction drama arthouse film by Lars von Trier in which the titular rogue planet is on a collision course with Earth
- ʻOumuamua, an interstellar object that passed through the Solar System in 2017
- Remina - 2004-5 horror manga by Junji Ito, in which the titular sentient rogue planet sets its sights on Earth to consume it shortly after its discovery
- Rogue comet – A comet not gravitationally bound to any star
- The Wandering Earth
- Tidally detached exomoon
- Rogue black hole
References
- ↑ Shostak, Seth (24 February 2005). "Orphan Planets: It's a Hard Knock Life". https://www.space.com/818-orphan-planets-hard-knock-life.html.
- ↑ Lloyd, Robin (18 April 2001). "Free-Floating Planets – British Team Restakes Dubious Claim". http://www.space.com/scienceastronomy/astronomy/free_floaters_010403-1.html.
- ↑ "Orphan 'planet' findings challenged by new model". NASA Astrobiology. 18 April 2001. http://astrobiology.arc.nasa.gov/news/expandnews.cfm?id%3D783.
- ↑ 4.0 4.1 4.2 Kirkpatrick, J. Davy; Gelino, Christopher R.; Faherty, Jacqueline K.; Meisner, Aaron M.; Caselden, Dan; Schneider, Adam C.; Marocco, Federico; Cayago, Alfred J. et al. (2021-03-01). "The Field Substellar Mass Function Based on the Full-sky 20 pc Census of 525 L, T, and Y Dwarfs". The Astrophysical Journal Supplement Series 253 (1): 7. doi:10.3847/1538-4365/abd107. ISSN 0067-0049. Bibcode: 2021ApJS..253....7K.
- ↑ Neil deGrasse Tyson in Cosmos: A Spacetime Odyssey as referred to by National Geographic
- ↑ "The research team found that the mission will provide a rogue planet count that is at least 10 times more precise than current estimates, which range from tens of billions to trillions in our galaxy." https://scitechdaily.com/our-solar-system-may-be-unusual-rogue-planets-unveiled-with-nasas-roman-space-telescope/
- ↑ Working Group on Extrasolar Planets – Definition of a "Planet" Position Statement on the Definition of a "Planet" (IAU)
- ↑ "Rogue planet find makes astronomers ponder theory"
- ↑ 9.0 9.1 9.2 9.3 Zapatero Osorio, M. R. (6 October 2000). "Discovery of Young, Isolated Planetary Mass Objects in the σ Orionis Star Cluster". Science 290 (5489): 103–7. doi:10.1126/science.290.5489.103. PMID 11021788. Bibcode: 2000Sci...290..103Z.
- ↑ 10.0 10.1 Lucas, P. W.; Roche, P. F. (2000-06-01). "A population of very young brown dwarfs and free-floating planets in Orion". Monthly Notices of the Royal Astronomical Society 314 (4): 858–864. doi:10.1046/j.1365-8711.2000.03515.x. ISSN 0035-8711. Bibcode: 2000MNRAS.314..858L. https://ui.adsabs.harvard.edu/abs/2000MNRAS.314..858L.
- ↑ 11.0 11.1 Spezzi, L.; Alves de Oliveira, C.; Moraux, E.; Bouvier, J.; Winston, E.; Hudelot, P.; Bouy, H.; Cuillandre, J. -C. (2012-09-01). "Searching for planetary-mass T-dwarfs in the core of Serpens". Astronomy and Astrophysics 545: A105. doi:10.1051/0004-6361/201219559. ISSN 0004-6361. Bibcode: 2012A&A...545A.105S. https://ui.adsabs.harvard.edu/abs/2012A&A...545A.105S.
- ↑ 12.0 12.1 Schneider, Adam C. (21 April 2016). "WISEA J114724.10-204021.3: A Free-floating Planetary Mass Member of the TW Hya Association". Astrophysical Journal Letters 822 (1): L1. doi:10.3847/2041-8205/822/1/L1. Bibcode: 2016ApJ...822L...1S.
- ↑ 13.0 13.1 Liu, Michael C. (10 November 2013). "The Extremely Red, Young L Dwarf PSO J318.5338-22.8603: A Free-floating Planetary-mass Analog to Directly Imaged Young Gas-giant Planets". Astrophysical Journal Letters 777 (1): L20. doi:10.1088/2041-8205/777/2/L20. Bibcode: 2013ApJ...777L..20L.
- ↑ 14.0 14.1 Bennett, D.P. et al. (13 December 2013). "A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge". The Astrophysical Journal 785 (2): 155. doi:10.1088/0004-637X/785/2/155. Bibcode: 2014ApJ...785..155B.
- ↑ 15.0 15.1 Mróz, Przemek et al. (2020). "A Terrestrial-mass Rogue Planet Candidate Detected in the Shortest-timescale Microlensing Event". The Astrophysical Journal Letters 903 (1): L11. doi:10.3847/2041-8213/abbfad. Bibcode: 2020ApJ...903L..11M.
- ↑ 16.0 16.1 "ESO telescopes help uncover largest group of rogue planets yet". European Southern Observatory. 22 December 2021. https://www.eso.org/public/news/eso2120/.
- ↑ "Billions of Starless Planets Haunt Dark Cloud Cradles" (in en). 2021-12-23. https://www.nao.ac.jp/en/news/science/2021/20211223-subaru.html.
- ↑ 18.0 18.1 Shen, Zili (2021-12-30). "Wandering Planets" (in en-US). https://astrobites.org/2021/12/30/free-floating-planets/.
- ↑ "Largest Collection of Free-Floating Planets Found in the Milky Way - KPNO". https://kpno.noirlab.edu/news/noirlab2131/.
- ↑ 20.0 20.1 20.2 Lucas, P. W.; Roche, P. F.; Allard, France; Hauschildt, P. H. (2001-09-01). "Infrared spectroscopy of substellar objects in Orion". Monthly Notices of the Royal Astronomical Society 326 (2): 695–721. doi:10.1046/j.1365-8711.2001.04666.x. ISSN 0035-8711. Bibcode: 2001MNRAS.326..695L. https://ui.adsabs.harvard.edu/abs/2001MNRAS.326..695L.
- ↑ 21.0 21.1 21.2 21.3 21.4 Caballero, José A. (2018-09-01). "A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What?". Geosciences 8 (10): 362. doi:10.3390/geosciences8100362. Bibcode: 2018Geosc...8..362C.
- ↑ Oasa, Yumiko; Tamura, Motohide; Sugitani, Koji (1999-11-01). "A Deep Near-Infrared Survey of the Chamaeleon I Dark Cloud Core". The Astrophysical Journal 526 (1): 336–343. doi:10.1086/307964. ISSN 0004-637X. Bibcode: 1999ApJ...526..336O. https://ui.adsabs.harvard.edu/abs/1999ApJ...526..336O.
- ↑ Luhman, K. L.; Peterson, Dawn E.; Megeath, S. T. (2004-12-01). "Spectroscopic Confirmation of the Least Massive Known Brown Dwarf in Chamaeleon". The Astrophysical Journal 617 (1): 565–568. doi:10.1086/425228. ISSN 0004-637X. Bibcode: 2004ApJ...617..565L. https://ui.adsabs.harvard.edu/abs/2004ApJ...617..565L.
- ↑ O’Callaghan, Jonathan (2 October 2023). "The Orion Nebula Is Full of Impossible Enigmas That Come in Pairs - In new, high-resolution imagery of the star-forming region, scientists spotted worlds that defied explanation, naming them Jupiter Mass Binary Objects.". The New York Times. Archived from the original on 2 October 2023. https://archive.today/20231002114507/https://www.nytimes.com/2023/10/02/science/orion-nebula-webb-planets.html. Retrieved 2 October 2023.
- ↑ 25.0 25.1 25.2 25.3 25.4 Pearson, Samuel G.; McCaughrean, Mark J. (2 Oct 2023). "Jupiter Mass Binary Objects in the Trapezium Cluster". p. 24. arXiv:2310.01231 [astro-ph.EP].
- ↑ Homeless' Planets May Be Common in Our Galaxy by Jon Cartwright, Science Now, 18 May 2011, Accessed 20 May 2011
- ↑ Planets that have no stars: New class of planets discovered, Physorg.com, 18 May 2011. Accessed May 2011.
- ↑ Sumi, T. (2011). "Unbound or Distant Planetary Mass Population Detected by Gravitational Microlensing". Nature 473 (7347): 349–352. doi:10.1038/nature10092. PMID 21593867. Bibcode: 2011Natur.473..349S.
- ↑ "Researchers say galaxy may swarm with 'nomad planets'". Stanford University. 2012-02-23. https://www6.slac.stanford.edu/news/2012-02-23-researchers-say-galaxy-may-swarm-nomad-planets.
- ↑ P. Mroz (2017). "No large population of unbound or wide-orbit Jupiter-mass planets". Nature 548 (7666): 183–186. doi:10.1038/nature23276. PMID 28738410. Bibcode: 2017Natur.548..183M.
- ↑ Gough, Evan (1 October 2020). "A Rogue Earth-Mass Planet Has Been Discovered Freely Floating in the Milky Way Without a Star". Universe Today. https://www.universetoday.com/148097/a-rogue-earth-mass-planet-has-been-discovered-freely-floating-in-the-milky-way-without-a-star/.
- ↑ Redd, Nola Taylor (19 October 2020). "Rogue Rocky Planet Found Adrift in the Milky Way – The diminutive world and others like it could help astronomers probe the mysteries of planet formation". Scientific American. https://www.scientificamerican.com/article/rogue-rocky-planet-found-adrift-in-the-milky-way/.
- ↑ Saumon, D.; Marley, Mark S. (2008-12-01). "The Evolution of L and T Dwarfs in Color-Magnitude Diagrams". The Astrophysical Journal 689 (2): 1327–1344. doi:10.1086/592734. ISSN 0004-637X. Bibcode: 2008ApJ...689.1327S. https://ui.adsabs.harvard.edu/abs/2008ApJ...689.1327S.
- ↑ 34.0 34.1 34.2 Esplin, T. L.; Luhman, K. L.; Faherty, J. K.; Mamajek, E. E.; Bochanski, J. J. (2017-08-01). "A Survey for Planetary-mass Brown Dwarfs in the Chamaeleon I Star-forming Region". The Astronomical Journal 154 (2): 46. doi:10.3847/1538-3881/aa74e2. ISSN 0004-6256. Bibcode: 2017AJ....154...46E.
- ↑ 35.0 35.1 Gagné, Jonathan (20 July 2015). "SDSS J111010.01+011613.1: A New Planetary-mass T Dwarf Member of the AB Doradus Moving Group". Astrophysical Journal Letters 808 (1): L20. doi:10.1088/2041-8205/808/1/L20. Bibcode: 2015ApJ...808L..20G.
- ↑ Leggett, S. K.; Tremblin, P.; Esplin, T. L.; Luhman, K. L.; Morley, Caroline V. (2017-06-01). "The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy". The Astrophysical Journal 842 (2): 118. doi:10.3847/1538-4357/aa6fb5. ISSN 0004-637X. Bibcode: 2017ApJ...842..118L.
- ↑ Luhman, Kevin L.; Esplin, Taran L. (September 2016). "The Spectral Energy Distribution of the Coldest Known Brown Dwarf". The Astronomical Journal 152 (2): 78. doi:10.3847/0004-6256/152/3/78. Bibcode: 2016AJ....152...78L.
- ↑ 38.0 38.1 Luhman, Kevin L. (10 February 2005). "Spitzer Identification of the Least Massive Known Brown Dwarf with a Circumstellar Disk". Astrophysical Journal Letters 620 (1): L51–L54. doi:10.1086/428613. Bibcode: 2005ApJ...620L..51L.
- ↑ 39.0 39.1 Bardalez Gagliuffi, Daniella C.; Faherty, Jacqueline K.; Schneider, Adam C.; Meisner, Aaron; Caselden, Dan; Colin, Guillaume; Goodman, Sam; Kirkpatrick, J. Davy et al. (2020-06-01). "WISEA J083011.95+283716.0: A Missing Link Planetary-mass Object". The Astrophysical Journal 895 (2): 145. doi:10.3847/1538-4357/ab8d25. Bibcode: 2020ApJ...895..145B.
- ↑ Kirkpatrick, J. Davy; Marocco, Federico; Caselden, Dan; Meisner, Aaron M.; Faherty, Jacqueline K.; Schneider, Adam C.; Kuchner, Marc J.; Casewell, S. L. et al. (2021-07-01). "The Enigmatic Brown Dwarf WISEA J153429.75-104303.3 (a.k.a. "The Accident")". The Astrophysical Journal 915 (1): L6. doi:10.3847/2041-8213/ac0437. ISSN 0004-637X. Bibcode: 2021ApJ...915L...6K.
- ↑ 41.0 41.1 Joergens, V.; Bonnefoy, M.; Liu, Y.; Bayo, A.; Wolf, S.; Chauvin, G.; Rojo, P. (2013). "OTS 44: Disk and accretion at the planetary border". Astronomy & Astrophysics 558 (7): L7. doi:10.1051/0004-6361/201322432. Bibcode: 2013A&A...558L...7J.
- ↑ Dupuy, Trent J.; Liu, Michael C. (2012-08-01). "The Hawaii Infrared Parallax Program. I. Ultracool Binaries and the L/T Transition". The Astrophysical Journal Supplement Series 201: 19. doi:10.1088/0067-0049/201/2/19. ISSN 0067-0049. Bibcode: 2012ApJS..201...19D. https://ui.adsabs.harvard.edu/abs/2012ApJS..201...19D.
- ↑ Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Dupuy, Trent J.; Siverd, Robert J. (2021-04-01). "The Hawaii Infrared Parallax Program. V. New T-dwarf Members and Candidate Members of Nearby Young Moving Groups". The Astrophysical Journal 911: 7. doi:10.3847/1538-4357/abe3fa. ISSN 0004-637X. Bibcode: 2021ApJ...911....7Z.
- ↑ 44.0 44.1 44.2 Miret-Roig, Núria; Bouy, Hervé; Raymond, Sean N.; Tamura, Motohide; Bertin, Emmanuel; Barrado, David; Olivares, Javier; Galli, Phillip A. B. et al. (2021-12-22). "A rich population of free-floating planets in the Upper Scorpius young stellar association" (in en). Nature Astronomy 6: 89–97. doi:10.1038/s41550-021-01513-x. ISSN 2397-3366. Bibcode: 2022NatAs...6...89M. https://www.nature.com/articles/s41550-021-01513-x. See also
Nature SharedIt article link;
ESO article link
- ↑ Béjar, V. J. S.; Martín, Eduardo L. (2018-01-01). Brown Dwarfs and Free-Floating Planets in Young Stellar Clusters. Bibcode: 2018haex.bookE..92B. https://ui.adsabs.harvard.edu/abs/2018haex.bookE..92B.
- ↑ 46.0 46.1 46.2 46.3 46.4 Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Dupuy, Trent J.; Siverd, Robert J. (2021-04-01). "The Hawaii Infrared Parallax Program. V. New T-dwarf Members and Candidate Members of Nearby Young Moving Groups". The Astrophysical Journal 911 (1): 7. doi:10.3847/1538-4357/abe3fa. ISSN 0004-637X. Bibcode: 2021ApJ...911....7Z.
- ↑ 47.0 47.1 47.2 Bouy, H.; Tamura, M.; Barrado, D.; Motohara, K.; Castro Rodríguez, N.; Miret-Roig, N.; Konishi, M.; Koyama, S. et al. (2022-08-01). "Infrared spectroscopy of free-floating planet candidates in Upper Scorpius and Ophiuchus". Astronomy and Astrophysics 664: A111. doi:10.1051/0004-6361/202243850. ISSN 0004-6361. Bibcode: 2022A&A...664A.111B. https://ui.adsabs.harvard.edu/abs/2022A&A...664A.111B.
- ↑ Raymond, Sean; Bouy, Núria Miret-Roig & Hervé (2021-12-22). "We Discovered a Rogues' Gallery of Monster-Sized Gas Giants". http://nautil.us/blog/we-discovered-a-rogues-gallery-of-monster_sized-gas-giants.
- ↑ Boss, Alan P. (2001-04-01). "Formation of Planetary-Mass Objects by Protostellar Collapse and Fragmentation". The Astrophysical Journal 551 (2): L167–L170. doi:10.1086/320033. ISSN 0004-637X. Bibcode: 2001ApJ...551L.167B. https://ui.adsabs.harvard.edu/abs/2001ApJ...551L.167B.
- ↑ Gahm, G. F.; Grenman, T.; Fredriksson, S.; Kristen, H. (2007-04-01). "Globulettes as Seeds of Brown Dwarfs and Free-Floating Planetary-Mass Objects". The Astronomical Journal 133 (4): 1795–1809. doi:10.1086/512036. ISSN 0004-6256. Bibcode: 2007AJ....133.1795G. https://ui.adsabs.harvard.edu/abs/2007AJ....133.1795G.
- ↑ 51.0 51.1 Limbach, Mary Anne; Vos, Johanna M.; Winn, Joshua N.; Heller, René; Mason, Jeffrey C.; Schneider, Adam C.; Dai, Fei (2021-09-01). "On the Detection of Exomoons Transiting Isolated Planetary-mass Objects". The Astrophysical Journal 918 (2): L25. doi:10.3847/2041-8213/ac1e2d. ISSN 0004-637X. Bibcode: 2021ApJ...918L..25L.
- ↑ Luhman, K. L.; Adame, Lucía; D'Alessio, Paola; Calvet, Nuria; Hartmann, Lee; Megeath, S. T.; Fazio, G. G. (2005-12-01). "Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk". The Astrophysical Journal 635: L93–L96. doi:10.1086/498868. ISSN 0004-637X. Bibcode: 2005ApJ...635L..93L. https://ui.adsabs.harvard.edu/abs/2005ApJ...635L..93L.
- ↑ 53.0 53.1 Jayawardhana, Ray; Ivanov, Valentin D. (2006-08-01). "Spectroscopy of Young Planetary Mass Candidates with Disks". The Astrophysical Journal 647 (2): L167–L170. doi:10.1086/507522. ISSN 0004-637X. Bibcode: 2006ApJ...647L.167J. https://ui.adsabs.harvard.edu/abs/2006ApJ...647L.167J.
- ↑ 54.0 54.1 54.2 Rilinger, Anneliese M.; Espaillat, Catherine C. (2021-11-01). "Disk Masses and Dust Evolution of Protoplanetary Disks around Brown Dwarfs". The Astrophysical Journal 921 (2): 182. doi:10.3847/1538-4357/ac09e5. ISSN 0004-637X. Bibcode: 2021ApJ...921..182R.
- ↑ Zapatero Osorio, M. R.; Caballero, J. A.; Béjar, V. J. S.; Rebolo, R.; Barrado Y Navascués, D.; Bihain, G.; Eislöffel, J.; Martín, E. L. et al. (2007-09-01). "Discs of planetary-mass objects in σ Orionis". Astronomy and Astrophysics 472: L9–L12. doi:10.1051/0004-6361:20078116. ISSN 0004-6361. Bibcode: 2007A&A...472L...9Z. https://ui.adsabs.harvard.edu/abs/2007A&A...472L...9Z.
- ↑ 56.0 56.1 Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Manara, Carlo Felice (2016-12-01). "A Candidate Planetary-mass Object with a Photoevaporating Disk in Orion". The Astrophysical Journal Letters 833 (2): L16. doi:10.3847/2041-8213/833/2/L16. ISSN 0004-637X. Bibcode: 2016ApJ...833L..16F.
- ↑ Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Aller, Kimberly M.; Zhang, Zhoujian; Kotson, Michael C.; Burgett, W. S. et al. (2017-03-01). "A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius-Centaurus". The Astrophysical Journal 837: 95. doi:10.3847/1538-4357/aa5df0. ISSN 0004-637X. Bibcode: 2017ApJ...837...95B.
- ↑ Scholz, Aleks; Muzic, Koraljka; Jayawardhana, Ray; Almendros-Abad, Victor; Wilson, Isaac (2023-05-01). "Disks around Young Planetary-mass Objects: Ultradeep Spitzer Imaging of NGC 1333". The Astronomical Journal 165 (5): 196. doi:10.3847/1538-3881/acc65d. ISSN 0004-6256. Bibcode: 2023AJ....165..196S.
- ↑ Alves de Oliveira, C.; Moraux, E.; Bouvier, J.; Duchêne, G.; Bouy, H.; Maschberger, T.; Hudelot, P. (2013-01-01). "Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses". Astronomy and Astrophysics 549: A123. doi:10.1051/0004-6361/201220229. ISSN 0004-6361. Bibcode: 2013A&A...549A.123A. https://ui.adsabs.harvard.edu/abs/2013A&A...549A.123A.
- ↑ Boucher, Anne; Lafrenière, David; Gagné, Jonathan; Malo, Lison; Faherty, Jacqueline K.; Doyon, René; Chen, Christine H. (2016-11-01). "BANYAN. VIII. New Low-mass Stars and Brown Dwarfs with Candidate Circumstellar Disks". The Astrophysical Journal 832: 50. doi:10.3847/0004-637X/832/1/50. ISSN 0004-637X. Bibcode: 2016ApJ...832...50B.
- ↑ 61.0 61.1 61.2 Ma, Sizheng; Mao, Shude; Ida, Shigeru; Zhu, Wei; Lin, Douglas N. C. (2016-09-01). "Free-floating planets from core accretion theory: microlensing predictions". Monthly Notices of the Royal Astronomical Society 461 (1): L107–L111. doi:10.1093/mnrasl/slw110. ISSN 0035-8711. Bibcode: 2016MNRAS.461L.107M. https://ui.adsabs.harvard.edu/abs/2016MNRAS.461L.107M.
- ↑ Hong, Yu-Cian; Raymond, Sean N.; Nicholson, Philip D.; Lunine, Jonathan I. (2018-01-01). "Innocent Bystanders: Orbital Dynamics of Exomoons During Planet-Planet Scattering". The Astrophysical Journal 852 (2): 85. doi:10.3847/1538-4357/aaa0db. ISSN 0004-637X. Bibcode: 2018ApJ...852...85H.
- ↑ Goulinski, Nadav; Ribak, Erez N. (2018-01-01). "Capture of free-floating planets by planetary systems". Monthly Notices of the Royal Astronomical Society 473: 1589–1595. doi:10.1093/mnras/stx2506. ISSN 0035-8711. Bibcode: 2018MNRAS.473.1589G. https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.1589G.
- ↑ Raymond, Sean (9 April 2005). "Life in the dark". Aeon. https://aeon.co/essays/could-we-make-our-home-on-a-rogue-planet-without-a-sun.
- ↑ 65.0 65.1 65.2 65.3 Stevenson, David J.; Stevens, C. F. (1999). "Life-sustaining planets in interstellar space?". Nature 400 (6739): 32. doi:10.1038/21811. PMID 10403246. Bibcode: 1999Natur.400...32S.
- ↑ Lissauer, J. J. (1987). "Timescales for Planetary Accretion and the Structure of the Protoplanetary disk". Icarus 69 (2): 249–265. doi:10.1016/0019-1035(87)90104-7. Bibcode: 1987Icar...69..249L.
- ↑ Abbot, Dorian S.; Switzer, Eric R. (2 June 2011). "The Steppenwolf: A proposal for a habitable planet in interstellar space". The Astrophysical Journal 735 (2): L27. doi:10.1088/2041-8205/735/2/L27. Bibcode: 2011ApJ...735L..27A.
- ↑ Debes, John H.; Steinn Sigurðsson (20 October 2007). "The Survival Rate of Ejected Terrestrial Planets with Moons". The Astrophysical Journal Letters 668 (2): L167–L170. doi:10.1086/523103. Bibcode: 2007ApJ...668L.167D.
- ↑ Luhman, Kevin L. (10 December 2005). "Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk". Astrophysical Journal Letters 635 (1): L93–L96. doi:10.1086/498868. Bibcode: 2005ApJ...635L..93L.
- ↑ 70.00 70.01 70.02 70.03 70.04 70.05 70.06 70.07 70.08 70.09 70.10 Sanghi, Aniket; Liu, Michael C.; Best, William M.; Dupuy, Trent J.; Siverd, Robert J.; Zhang, Zhoujian; Hurt, Spencer A.; Magnier, Eugene A. et al. (6 September 2023). "The Hawaii Infrared Parallax Program. VI. The Fundamental Properties of 1000+ Ultracool Dwarfs and Planetary-mass Objects Using Optical to Mid-IR SEDs and Comparison to BT-Settl and ATMO 2020 Model Atmospheres". ApJ: 51.
- ↑ 71.0 71.1 71.2 71.3 71.4 71.5 71.6 71.7 71.8 71.9 Sanghi, Aniket; Liu, Michael C.; Best, William M.; Dupuy, Trent J.; Siverd, Robert J.; Zhang, Zhoujian; Hurt, Spencer A.; Magnier, Eugene A. et al. (7 September 2023). "Table of Ultracool Fundamental Properties". Zenodo: 1. doi:10.5281/zenodo.8315643. https://zenodo.org/record/8315643.
- ↑ Marsh, Kenneth A. (1 February 2010). "A Young Planetary-Mass Object in the ρ Oph Cloud Core". Astrophysical Journal Letters 709 (2): L158–L162. doi:10.1088/2041-8205/709/2/L158. Bibcode: 2010ApJ...709L.158M.
- ↑ 73.0 73.1 Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Barman, Travis S.; Marsh, Kenneth A.; Cushing, Michael C.; Wright, E. L. (2013). "The Coldest Brown Dwarf (or Free-floating Planet)?: The Y Dwarf WISE 1828+2650". The Astrophysical Journal 764 (1): 101. doi:10.1088/0004-637X/764/1/101. Bibcode: 2013ApJ...764..101B.
- ↑ Delorme, Philippe (25 September 2012). "CFBDSIR2149-0403: a 4-7 Jupiter-mass free-floating planet in the young moving group AB Doradus?". Astronomy & Astrophysics 548A: 26. doi:10.1051/0004-6361/201219984. Bibcode: 2012A&A...548A..26D.
- ↑ Scholz, Alexander; Jayawardhana, Ray; Muzic, Koraljka; Geers, Vincent; Tamura, Motohide; Tanaka, Ichi (2012-09-01). "Substellar Objects in Nearby Young Clusters (SONYC). VI. The Planetary-mass Domain of NGC 1333". The Astrophysical Journal 756 (1): 24. doi:10.1088/0004-637X/756/1/24. ISSN 0004-637X. Bibcode: 2012ApJ...756...24S. https://ui.adsabs.harvard.edu/abs/2012ApJ...756...24S.
- ↑ "NAME Serpens Cluster". http://simbad.cds.unistra.fr/simbad/sim-id?Ident=%402656129&Name=NAME%20Serpens%20Cluster&submit=submit.
- ↑ Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L. (2015-09-01). "Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime". The Astrophysical Journal 810 (2): 158. doi:10.1088/0004-637X/810/2/158. ISSN 0004-637X. Bibcode: 2015ApJ...810..158F. https://ui.adsabs.harvard.edu/abs/2015ApJ...810..158F.
- ↑ Gagné, Jonathan (10 March 2014). "BANYAN. II. Very Low Mass and Substellar Candidate Members to Nearby, Young Kinematic Groups with Previously Known Signs of Youth". Astrophysical Journal 783 (2): 121. doi:10.1088/0004-637X/783/2/121. Bibcode: 2014ApJ...783..121G.
- ↑ Schneider, Adam C. (9 January 2014). "Discovery of the Young L Dwarf WISE J174102.78-464225.5". Astronomical Journal 147 (2): 34. doi:10.1088/0004-6256/147/2/34. Bibcode: 2014AJ....147...34S.
- ↑ Zapatero Osorio, M. R.; Lodieu, N.; Béjar, V. J. S.; Martín, Eduardo L.; Ivanov, V. D.; Bayo, A.; Boffin, H. M. J.; Muzic, K. et al. (2016-08-01). "Near-infrared photometry of WISE J085510.74-071442.5". Astronomy and Astrophysics 592: A80. doi:10.1051/0004-6361/201628662. ISSN 0004-6361. Bibcode: 2016A&A...592A..80Z.
- ↑ Luhman, Kevin L. (10 May 2014). "Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun". Astrophysical Journal Letters 786 (2): L18. doi:10.1088/2041-8205/786/2/L18. Bibcode: 2014ApJ...786L..18L.
- ↑ Gagné, Jonathan; Gonzales, Eileen C.; Faherty, Jacqueline K. (2018). A Gaia DR2 Confirmation that 2MASS J12074836-3900043 is a Member of the TW Hya Association. doi:10.48550/ARXIV.1804.09625. https://arxiv.org/abs/1804.09625.
- ↑ Gagné, Jonathan (10 April 2014). "The Coolest Isolated Brown Dwarf Candidate Member of TWA". Astrophysical Journal Letters 785 (1): L14. doi:10.1088/2041-8205/785/1/L14. Bibcode: 2014ApJ...785L..14G.
- ↑ Liu, Michael C. (9 December 2016). "The Hawaii Infrared Parallax Program. II. Young Ultracool Field Dwarfs". Astrophysical Journal 833 (1): 96. doi:10.3847/1538-4357/833/1/96. Bibcode: 2016ApJ...833...96L.
- ↑ Gagné, Jonathan (1 September 2014). "SIMP J2154-1055: A New Low-gravity L4β Brown Dwarf Candidate Member of the Argus Association". Astrophysical Journal Letters 792 (1): L17. doi:10.1088/2041-8205/792/1/L17. Bibcode: 2014ApJ...792L..17G.
- ↑ Kellogg, Kendra (11 April 2016). "The Nearest Isolated Member of the TW Hydrae Association is a Giant Planet Analog". Astrophysical Journal Letters 821 (1): L15. doi:10.3847/2041-8205/821/1/L15. Bibcode: 2016ApJ...821L..15K.
- ↑ Peña Ramírez, K.; Béjar, V. J. S.; Zapatero Osorio, M. R. (2016-02-01). "A new free-floating planet in the Upper Scorpius association". Astronomy and Astrophysics 586: A157. doi:10.1051/0004-6361/201527425. ISSN 0004-6361. Bibcode: 2016A&A...586A.157P. https://ui.adsabs.harvard.edu/abs/2016A&A...586A.157P.
- ↑ Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Aller, Kimberly M.; Zhang, Zhoujian; Kotson, Michael C.; Burgett, W. S. et al. (2017-03-01). "A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius-Centaurus". The Astrophysical Journal 837 (1): 95. doi:10.3847/1538-4357/aa5df0. ISSN 0004-637X. Bibcode: 2017ApJ...837...95B.
- ↑ Zapatero Osorio, M. R.; Béjar, V. J. S.; Lodieu, N.; Manjavacas, E. (2018-03-01). "Confirming the least massive members of the Pleiades star cluster". Monthly Notices of the Royal Astronomical Society 475 (1): 139–153. doi:10.1093/mnras/stx3154. ISSN 0035-8711. Bibcode: 2018MNRAS.475..139Z. https://ui.adsabs.harvard.edu/abs/2018MNRAS.475..139Z.
- ↑ Gagné, Jonathan; Allers, Katelyn N.; Theissen, Christopher A.; Faherty, Jacqueline K.; Bardalez Gagliuffi, Daniella; Artigau, Étienne (2018-02-01). "2MASS J13243553+6358281 Is an Early T-type Planetary-mass Object in the AB Doradus Moving Group". The Astrophysical Journal 854 (2): L27. doi:10.3847/2041-8213/aaacfd. ISSN 0004-637X. Bibcode: 2018ApJ...854L..27G.
- ↑ Vos, Johanna M.; Faherty, Jacqueline K.; Gagné, Jonathan; Marley, Mark; Metchev, Stanimir; Gizis, John; Rice, Emily L.; Cruz, Kelle (2022). "Let the Great World Spin: Revealing the Stormy, Turbulent Nature of Young Giant Exoplanet Analogs with the Spitzer Space Telescope". The Astrophysical Journal 924 (2): 68. doi:10.3847/1538-4357/ac4502. Bibcode: 2022ApJ...924...68V.
- ↑ "The Extrasolar Planet Encyclopaedia – 2MASS J0718-6415". Extrasolar Planets Encyclopaedia. https://exoplanet.eu/catalog/2mass_j0718_6415--8076/.
- ↑ Schneider, Adam C.; Burgasser, Adam J.; Bruursema, Justice; Munn, Jeffrey A.; Vrba, Frederick J.; Caselden, Dan; Kabatnik, Martin; Rothermich, Austin et al. (2023-02-01). "Redder than Red: Discovery of an Exceptionally Red L/T Transition Dwarf". The Astrophysical Journal 943 (2): L16. doi:10.3847/2041-8213/acb0cd. ISSN 0004-637X. Bibcode: 2023ApJ...943L..16S.
- ↑ 94.0 94.1 Mróz, Przemek; Poleski, Radosław; Gould, Andrew; Udalski, Andrzej; Sumi, Takahiro; Szymański, Michał K.; Soszyński, Igor; Pietrukowicz, Paweł et al. (2020), "A terrestrial-mass rogue planet candidate detected in the shortest-timescale microlensing event", The Astrophysical Journal 903 (1): L11, doi:10.3847/2041-8213/abbfad, Bibcode: 2020ApJ...903L..11M
- ↑ Mróz, Przemek; Udalski, Andrzej; Bennett, David P.; Ryu, Yoon-Hyun; Sumi, Takahiro; Shvartzvald, Yossi; Skowron, Jan; Poleski, Radosław et al. (2019-02-01). "Two new free-floating or wide-orbit planets from microlensing". Astronomy and Astrophysics 622: A201. doi:10.1051/0004-6361/201834557. ISSN 0004-6361. Bibcode: 2019A&A...622A.201M. https://ui.adsabs.harvard.edu/abs/2019A&A...622A.201M.
- ↑ 96.0 96.1 Becky Ferreira (9 November 2018). "Rare Sighting of Two Rogue Planets That Do Not Orbit Stars". Motherboard. https://motherboard.vice.com/en_us/article/ev3dkj/rare-sighting-of-two-rogue-planets-that-do-not-orbit-stars.
- ↑ 97.0 97.1 Jake Parks (16 November 2018). "These Two New 'Rogue Planets' Wander the Cosmos Without Stars". Discover Magazine. http://blogs.discovermagazine.com/d-brief/2018/11/16/rogue-planets-discovered/#.XEeAI2l7mUk.
- ↑ 98.0 98.1 Jake Parks (15 November 2018). "Two free-range planets found roaming the Milky Way in solitude". Astronomy Magazine. http://www.astronomy.com/news/2018/11/rogue-one-and-two.
- ↑ "Exoplanet-catalog". https://exoplanets.nasa.gov/exoplanet-catalog/6413/moa-2015-blg-337l-b/.
- ↑ Kim, Hyoun-Woo; Hwang, Kyu-Ha; Gould, Andrew; Yee, Jennifer C.; Ryu, Yoon-Hyun; Albrow, Michael D.; Chung, Sun-Ju; Han, Cheongho et al. (2021). "KMT-2019-BLG-2073: Fourth Free-floating Planet Candidate with θ e < 10 μas". The Astronomical Journal 162 (1): 15. doi:10.3847/1538-3881/abfc4a. Bibcode: 2021AJ....162...15K.
- ↑ 101.0 101.1 Mróz, Przemek et al. (2020), "A Free-floating or Wide-orbit Planet in the Microlensing Event OGLE-2019-BLG-0551", The Astronomical Journal 159 (6): 262, doi:10.3847/1538-3881/ab8aeb, Bibcode: 2020AJ....159..262M
- ↑ Kaczmarek, Zofia; McGill, Peter; Evans, N. Wyn; Smith, Leigh C.; Wyrzykowski, Łukasz; Howil, Kornel; Jabłońska, Maja (2022-08-01). "Dark lenses through the dust: parallax microlensing events in the VVV". Monthly Notices of the Royal Astronomical Society 514 (4): 4845–4860. doi:10.1093/mnras/stac1507. ISSN 0035-8711. Bibcode: 2022MNRAS.514.4845K. https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.4845K.
- ↑ 103.0 103.1 Koshimoto, Naoki; Sumi, Takahiro; Bennett, David P.; Bozza, Valerio; Mróz, Przemek; Udalski, Andrzej; Rattenbury, Nicholas J.; Abe, Fumio et al. (2023-03-14). "Terrestrial and Neptune mass free-floating planet candidates from the MOA-II 9-year Galactic Bulge survey". The Astronomical Journal 166 (3): 107. doi:10.3847/1538-3881/ace689. Bibcode: 2023AJ....166..107K.
Bibliography
External links
| Original source: https://en.wikipedia.org/wiki/Rogue planet. Read more |