BK-space

From HandWiki - Reading time: 2 min

Short description: Sequence space that is Banach

In functional analysis and related areas of mathematics, a BK-space or Banach coordinate space is a sequence space endowed with a suitable norm to turn it into a Banach space. All BK-spaces are normable FK-spaces.[1]

Examples

The space of convergent sequences [math]\displaystyle{ c, }[/math] the space of vanishing sequences [math]\displaystyle{ c_0, }[/math] and the space of bounded sequences [math]\displaystyle{ \ell^\infty }[/math] under the supremum norm [math]\displaystyle{ \|\cdot\|_{\infty} }[/math][1]

The space of absolutely p-summable sequences [math]\displaystyle{ \ell^p }[/math] with [math]\displaystyle{ p \geq 1 }[/math] and the norm [math]\displaystyle{ \|\cdot\|_p }[/math][1]

See also

References




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/BK-space
12 views | Status: cached on August 15 2024 13:14:45
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF