In functional analysis and related areas of mathematics, a BK-space or Banach coordinate space is a sequence space endowed with a suitable norm to turn it into a Banach space. All BK-spaces are normable FK-spaces.[1]
The space of convergent sequences [math]\displaystyle{ c, }[/math] the space of vanishing sequences [math]\displaystyle{ c_0, }[/math] and the space of bounded sequences [math]\displaystyle{ \ell^\infty }[/math] under the supremum norm [math]\displaystyle{ \|\cdot\|_{\infty} }[/math][1]
The space of absolutely p-summable sequences [math]\displaystyle{ \ell^p }[/math] with [math]\displaystyle{ p \geq 1 }[/math] and the norm [math]\displaystyle{ \|\cdot\|_p }[/math][1]
Original source: https://en.wikipedia.org/wiki/BK-space.
Read more |