Short description: Mathematical constants
The Beraha constants are a series of mathematical constants by which the [math]\displaystyle{ n\text{th} }[/math] Beraha constant is given by
- [math]\displaystyle{ B (n) = 2 + 2 \cos \left ( \frac{2\pi}{n} \right ). }[/math]
Notable examples of Beraha constants include [math]\displaystyle{ B (5) }[/math]is [math]\displaystyle{ \varphi + 1 }[/math], where [math]\displaystyle{ \varphi }[/math] is the golden ratio, [math]\displaystyle{ B (7) }[/math]is the silver constant[1] (also known as the silver root),[2] and [math]\displaystyle{ B (10) = \varphi + 2 }[/math].
The following table summarizes the first ten Beraha constants.
[math]\displaystyle{ n }[/math]
|
[math]\displaystyle{ B(n) }[/math]
|
Approximately
|
1
|
4
|
|
2
|
0
|
|
3
|
1
|
|
4
|
2
|
|
5
|
[math]\displaystyle{ \frac{1}{2}(3+\sqrt{5}) }[/math]
|
2.618
|
6
|
3
|
|
7
|
[math]\displaystyle{ 2 + 2 \cos (\tfrac{2}{7}\pi) }[/math]
|
3.247
|
8
|
[math]\displaystyle{ 2 + \sqrt{2} }[/math]
|
3.414
|
9
|
[math]\displaystyle{ 2 + 2 \cos (\tfrac{2}{9}\pi) }[/math]
|
3.532
|
10
|
[math]\displaystyle{ \frac{1}{2}(5+\sqrt{5}) }[/math]
|
3.618
|
See also
Notes
References
- Weisstein, Eric W.. "Beraha Constants". http://mathworld.wolfram.com/BerahaConstants.html.
- Beraha, S. Ph.D. thesis. Baltimore, MD: Johns Hopkins University, 1974.
- Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 143, 1983.
- Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, pp. 160–163, 1986.
- Tutte, W. T. "Chromials." University of Waterloo, 1971.
- Tutte, W. T. "More about Chromatic Polynomials and the Golden Ratio." In Combinatorial Structures and their Applications: Proc. Calgary Internat. Conf., Calgary, Alberta, 1969. New York: Gordon and Breach, p. 439, 1969.
- Tutte, W. T. "Chromatic Sums for Planar Triangulations I: The Case [math]\displaystyle{ \lambda = 1 }[/math]," Research Report COPR 72–7, University of Waterloo, 1972a.
- Tutte, W. T. "Chromatic Sums for Planar Triangulations IV: The Case [math]\displaystyle{ \lambda = \infty }[/math]." Research Report COPR 72–4, University of Waterloo, 1972b.
| Original source: https://en.wikipedia.org/wiki/Beraha constants. Read more |