Bernstein set

From HandWiki - Reading time: 1 min

In mathematics, a Bernstein set is a subset of the real line that meets every uncountable closed subset of the real line but that contains none of them.[1]

A Bernstein set partitions the real line into two pieces in a peculiar way: every measurable set of positive measure meets both the Bernstein set and its complement, as does every set with the property of Baire that is not a meagre set.[2]

References

  1. Oxtoby, John C. (1980). Measure and Category (2nd ed.). p. 24. 
  2. Morgan, John C. II (1989), Point Set Theory, Chapman & Hall/CRC Pure and Applied Mathematics, 131, CRC Press, p. 163, ISBN 9780824781781, https://books.google.com/books?id=WwmvxtDlz9UC&pg=PA163 .




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Bernstein_set
13 views | Status: cached on September 03 2024 18:50:18
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF