In number theory, a bi-twin chain of length k + 1 is a sequence of natural numbers
in which every number is prime.[1]
The numbers [math]\displaystyle{ n-1, 2n-1, \dots, 2^kn - 1 }[/math] form a Cunningham chain of the first kind of length [math]\displaystyle{ k + 1 }[/math], while [math]\displaystyle{ n+1, 2n + 1, \dots, 2^kn + 1 }[/math] forms a Cunningham chain of the second kind. Each of the pairs [math]\displaystyle{ 2^in - 1, 2^in+ 1 }[/math] is a pair of twin primes. Each of the primes [math]\displaystyle{ 2^in - 1 }[/math] for [math]\displaystyle{ 0 \le i \le k - 1 }[/math] is a Sophie Germain prime and each of the primes [math]\displaystyle{ 2^in - 1 }[/math] for [math]\displaystyle{ 1 \le i \le k }[/math] is a safe prime.
k | n | Digits | Year | Discoverer |
---|---|---|---|---|
0 | 3756801695685×2666669 | 200700 | 2011 | Timothy D. Winslow, PrimeGrid |
1 | 7317540034×5011# | 2155 | 2012 | Dirk Augustin |
2 | 1329861957×937#×23 | 399 | 2006 | Dirk Augustin |
3 | 223818083×409#×26 | 177 | 2006 | Dirk Augustin |
4 | 657713606161972650207961798852923689759436009073516446064261314615375779503143112×149# | 138 | 2014 | Primecoin (block 479357) |
5 | 386727562407905441323542867468313504832835283009085268004408453725770596763660073×61#×245 | 118 | 2014 | Primecoin (block 476538) |
6 | 263840027547344796978150255669961451691187241066024387240377964639380278103523328×47# | 99 | 2015 | Primecoin (block 942208) |
7 | 10739718035045524715×13# | 24 | 2008 | Jaroslaw Wroblewski |
8 | 1873321386459914635×13#×2 | 24 | 2008 | Jaroslaw Wroblewski |
q# denotes the primorial 2×3×5×7×...×q.
(As of 2014), the longest known bi-twin chain is of length 8.
Original source: https://en.wikipedia.org/wiki/Bi-twin chain.
Read more |