Bacterial phyla

From HandWiki - Reading time: 20 min

Phylogenetic tree showing the diversity of Bacteria, Archaea, and Eukaryota.[1] Major lineages are assigned arbitrary colours and named, with well-characterized lineage names, in italics. Lineages lacking an isolated representative are highlighted with non-italicized names and red dots.
Short description: Phyla or divisions of the domain Bacteria


Bacterial phyla constitute the major lineages of the domain Bacteria. While the exact definition of a bacterial phylum is debated, a popular definition is that a bacterial phylum is a monophyletic lineage of bacteria whose 16S rRNA genes share a pairwise sequence identity of ~75% or less with those of the members of other bacterial phyla.[2]

It has been estimated that ~1,300 bacterial phyla exist.[2] As of May 2020, 41 bacterial phyla are formally accepted by the LPSN,[3] 89 bacterial phyla are recognized on the Silva database, dozens more have been proposed,[4][5] and hundreds likely remain to be discovered.[2] As of 2017, approximately 72% of widely recognized bacterial phyla were candidate phyla[6] (i.e. have no cultured representatives).

There were no fixed rules to the nomenclature of bacterial phyla. It was proposed that the suffix "-bacteria" be used for phyla.[citation needed] The situation changed in 2021. The rank of phylum has been included in the rules of the International Code of Nomenclature of Prokaryotes, using the ending –ota for phylum names that must be based on the name of a genus as its nomenclatural type.[7][8]

List of bacterial phyla

The following is a list of bacterial phyla that have been proposed.

Phylum Alternative names Group Cultured representative Notes
10bav-F6[9] No
"Abawacabacteria"[4][10] RIF46 CPR; Gracilibacteria-related CPR No
"Abditibacteriota"[11] FBP Yes[11]
"Absconditabacteria"[12][10] SR1 CPR; Gracilibacteria-related CPR No
ABY1[13] OD1-ABY1[14] CPR; Parcubacteria No
"Bipolaricaulota"[15] OP1, "Acetothermia"
Acidobacteriota "Acidobacteria" Yes[16]
Actinomycetota "Actinobacteria" Terrabacteria Yes[17]
"Adlerbacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 4 No
"Aerophobota" / "Aerophobetes" CD12, BHI80-139
"Amesbacteria"[18] CPR; Patescibacteria; Microgenomates No
"Andersenbacteria"[4] RIF9 CPR; Parcubacteria; Parcubacteria 4-related No
Armatimonadota[15] "Armatimonadetes", OP10 Terrabacteria Yes[19]
"Aminicenantes"[15] OP8
AncK6[9]
Apal-E12[9]
Atribacterota[15] OP9, JS1 No
Aquificota "Aquificae"
"Azambacteria" i[18][10] CPR; Patescibacteria; Parcubacteria; unclassified Parcubacteria No split by Anantharaman et al.
"Azambacteria" ii[18][10] CPR; Patescibacteria; Parcubacteria; unclassified Parcubacteria No … (Oct 2016) as being polyphyletic
Bacteroidota "Bacteroidetes" FCB group Yes
Balneolota[20] Yes
Bdellovibrionota
"Beckwithbacteria"[18] CPR; Patescibacteria; Microgenomates No
"Berkelbacteria"[21][10] ACD58 CPR; Saccharibacteria-related CPR No
BHI80-139[9]
"Blackburnbacteria"[4] RIF35 CPR; Microgenomates No
"Brennerbacteria"[4][10] RIF18 CPR; Parcubacteria; Parcubacteria 3 No
"Brownbacteria"[22] CPR; Parcubacteria; unclassified Parcubacteria No
"Buchananbacteria"[4][10] RIF37 CPR; Parcubacteria; Parcubacteria 1 No
Caldisericota[15] OP5,[23] "Caldiserica" FCB group Yes[24]
Calditrichota[25] FCB group[26]
"Calescamantes" EM19
"Campbellbacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 4 No seem to be polyphyletic: two clades
Campylobacterota
Chlamydiota "Chlamydiae"[27] PVC group
Chlorobiota "Chlorobi" FCB group
Chloroflexota "Chloroflexi" "Terrabacteria"
Chisholmbacteria[4] RIF36 CPR; "Microgenomates" No
Chrysiogenota "Chrysiogenetes"
"Cloacimonetes"[28] WWE1 FCB group[26]
"Coatesbacteria"[4] RIF8 No
"Collierbacteria"[18] CPR; Patescibacteria; Microgenomates No
"Colwellbacteria"[4][10] RIF41 CPR; Parcubacteria; Parcubacteria 3 No
Coprothermobacterota
"Curtissbacteria"[18] CPR; Patescibacteria; Microgenomates No
CPR-1[1] CPR No
CPR-3[1] CPR No
"Cyanobacteria" Terrabacteria
"Dadabacteria"[29] No
"Daviesbacteria"[18] CPR; Patescibacteria; Microgenomates No
"Delphibacteria"[6] FCB group No
"Delongbacteria"[4] RIF26, H-178 No
Deferribacterota Deferribacteres
Deinococcota Deinococcus–Thermus Terrabacteria
"Dependentiae"[30] TM6
Dictyoglomota Dictyoglomi[31]
"Dojkabacteria"[10] WS6 CPR; Microgenomates-related CPR
"Dormibacteraeota"[32] AD3 No
"Doudnabacteria"[18][10] SM2F11 CPR; Parcubacteria; Parcubacteria 1-related No
"Edwardsbacteria"[5][4] RIF29, UBP-2 [33] No
"Eisenbacteria"[4] RIF28 FCB group No
Elusimicrobiota Elusimicrobia, OP7, Termite Group 1 (TG1)[23] Yes[34]
"Eremiobacteraeota"[35][32] WPS-2, Palusbacterota[36] No
"Falkowbacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1 No
"Fermentibacteria"[37] Hyd24-12 No
"Fertabacteria"[6] CPR; Gracilibacteria-related CPR No
Fibrobacterota "Fibrobacteres" FCB group
"Firestonebacteria"[4] RIF1 No
"Fervidibacteria" OctSpa1-106
"Fischerbacteria"[4] RIF25 No
Bacillota "Firmicutes" Terrabacteria
"Fraserbacteria"[4] RIF31 No
Fusobacteriota "Fusobacteria"
Gemmatimonadota Gemmatimonadetes[38] FCB group[26] Yes[38]
"Glassbacteria"[4] RIF5 No
"Giovannonibacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 4-related No
"Gottesmanbacteria"[18] CPR; Patescibacteria; Microgenomates No
"Gracilibacteria"[39][10] GN02, BD1-5, SN-2 CPR; Patescibacteria; Gracilibacteria-related CPR No
"Gribaldobacteria"[4][10] CPR; Parcubacteria; Parcubacteria 2 No
"Handelsmanbacteria"[4] RIF27 No
"Harrisonbacteria"[4][10] RIF43 CPR; Parcubacteria; Parcubacteria 3 No
"Howlettbacteria"[10] CPR; Saccharibacteria-related CPR No
"Hugbacteria"[22] CPR; Parcubacteria; unclassified Parcubacteria No
"Hydrogenedentes" NKB19 No
Ignavibacteriota "Ignavibacteria", ZB1 FCB group
"Jacksonbacteria"[4][10] RIF38 CPR; Parcubacteria; Parcubacteria 1 No
"Jorgensenbacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 3 No
"Kaiserbacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 4 No
"Katanobacteria"[40][10] WWE3 CPR; Microgenomates-related No
"Kazanbacteria"[10][4] Kazan CPR; Saccharibacteria-related CPR No
"Kerfeldbacteria"[4][10] RIF4 CPR; Parcubacteria; Parcubacteria 1 No
Kiritimatiellota
"Komeilibacteria"[4][10] RIF6 CPR; Parcubacteria; Parcubacteria 1 No sometimes misspelled as "Komelilbacteria"[4]
"Kryptonia"[41] No
KSB1 No
"Krumholzibacteriota"[33]
"Kuenenbacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1 No
"Lambdaproteobacteria"[4] RIF24 Proteobacteria No
"Latescibacteria" WS3 FCB group[26] No
LCP-89[42]
Lentisphaerota "Lentisphaerae", vadinBE97 PVC group
"Levybacteria"[18] CPR; Patescibacteria; Microgenomates No
"Lindowbacteria"[4] RIF2 CPR; Saccharibacteria-related CPR No
"Liptonbacteria"[4][10] RIF42 CPR; Parcubacteria; Parcubacteria 3 No
"Lloydbacteria"[4][10] RIF45 CPR; Parcubacteria; Parcubacteria 4 No
"Magasanikbacteria"[18][43][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1 No
"Margulisbacteria"[4] RIF30 No
"Marinimicrobia" SAR406, Marine Group A FCB group[26] Yes
"Melainabacteria"[44] No
"Microgenomates"[45] OP11 CPR; Patescibacteria No Superphylum
"Modulibacteria"[39][46] KSB3, GN06 No
"Moranbacteria"[18][10] OD1-i[18] CPR; Patescibacteria; Parcubacteria; unclassified Parcubacteria No
"Muproteobacteria"[4] RIF23 Proteobacteria No
Myxococcota
NC10[47][13] No
"Nealsonbacteria"[4][10] RIF40 CPR; Parcubacteria; Parcubacteria 2 No
"Niyogibacteria"[4] RIF11 CPR; Parcubacteria; Parcubacteria 4-related No
Nitrospinota "Nitrospinae"[48] Yes[49][50]
Nitrospirota "Nitrospirae" Yes
"Nomurabacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1 No
"Omnitrophica"[15] OP3 PVC group No
"Pacebacteria"[18] CPR; Patescibacteria; Microgenomates No
"Parcubacteria"[12] OD1 CPR No Superphylum
"Parcubacteria" 1[10] CPR; Parcubacteria No
"Parcubacteria" 2[10] CPR; Parcubacteria No
"Parcubacteria" 3[10] CPR; Parcubacteria No
"Parcubacteria" 4[10] CPR; Parcubacteria No
"Parcunitrobacteria"[51] CPR; Parcubacteria; unclassified Parcubacteria[52] No Superphylum
PAUC34f[53] sponge‐associated unclassified lineage (SAUL) FCB group
"Peregrinibacteria"[54][55][56][57][10] PER CPR; Gracilibacteria-related CPR No
"Peribacteria"[10] CPR; Gracilibacteria-related CPR No
Planctomycetota "Planctomycetes" PVC group
"Poribacteria"[58] PVC group
"Portnoybacteria"[4] RIF22 CPR; Parcubacteria; Parcubacteria 4-related No
Pseudomonadota "Proteobacteria"
"Raymondbacteria"[4] RIF7 No
Riflebacteria[4] RIF32 No
Rhodothermota
"Roizmanbacteria"[18] CPR; Patescibacteria; Microgenomates No
"Rokubacteria"[29] No
"Ryanbacteria"[4][10] RIF10 CPR; Parcubacteria; Parcubacteri 4-related No
"Saccharibacteria"[30][10] TM7 CPR; Saccharibacteria-related CPR Yes
"Saltatorellota"[59]
"Schekmanbacteria"[4] RIF3 Proteobacteria No
"Shapirobacteria"[18] CPR; Patescibacteria; Microgenomates No
"Spechtbacteria"[4][10] RIF19 CPR; Parcubacteria; Parcubacteria 2 No
Spirochaetota "Spirochaetes"
"Staskawiczbacteria"[4][10] RIF20 CPR; Parcubacteria; Parcubacteria 2 No
"Sumerlaeota"[60][61] BRC1
"Sungbacteria"[4][10] RIF17 CPR; Parcubacteria; Parcubacteria 4-related No
Synergistota "Synergistetes"
TA06[62] No
"Tagabacteria"[4][10] RIF12 CPR; Parcubacteria; Parcubacteria 4-related No
"Taylorbacteria"[4][10] RIF16 CPR; Parcubacteria; Parcubacteria 4 No
"Tectomicrobia"[63]
Mycoplasmatota "Tenericutes"
"Terrybacteria"[4][10] RIF13 CPR; Parcubacteria; Parcubacteria 2 No
Thermodesulfobacteriota "Thermodesulfobacteria"
Thermomicrobiota "Thermomicrobia"
Thermotogota "Thermotogae", OP2, EM3[23] Yes[64]
"Torokbacteria"[10] CPR; Parcubacteria; unclssified Parcubacteria No
UBP-1[5] No
UBP-3[5] No
UBP-4[5] No
UBP-5[5] No
UBP-6[5] No
UBP-7[5] No
UBP-8[5] No
UBP-9[5] No
UBP-10[5] No
UBP-11[5] No
UBP-12[5] No
UBP-13[5] No
UBP-14[5] No
UBP-15[5] No
UBP-16[5] No
UBP-17[5] No
"Uhrbacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 1 No seem to be polyphyletic: two clades
"Veblenbacteria"[4] RIF39 CPR; Parcubacteria; Parcubacteria 1-related No
Verrucomicrobiota "Verrucomicrobia" PVC group
"Vogelbacteria"[4][10] RIF14 CPR; Parcubacteria; Parcubacteria 4 No
"Wallbacteria"[4] RIF33 No
"Wildermuthbacteria"[4][10] RIF21 CPR; Parcubacteria; Parcubacteria 2 No
"Wirthbacteria"[65] CPR-related bacteria No
"Woesebacteria"[18] CPR; Patescibacteria; Microgenomates No
"Wolfebacteria"[18][10] CPR; Patescibacteria; Parcubacteria; Parcubacteria 3 No
"Woykebacteria"[4][22] RIF34 CPR; Microgenomates No
WOR-1[62] No
WOR-2[62] No
WOR-3[62] No
"Yanofskybacteria"[18][10] CPR; Patescibacteria; Parcubacteria; unclassified Parcubacteria No
"Yonathbacteria"[4][10] RIF44 CPR; Parcubacteria; Parcubacteria 4 No
"Zambryskibacteria"[4][10] RIF15 CPR; Parcubacteria; Parcubacteria 4 No
ZB2 OD1-ZB2[14] CPR; Parcubacteria No
"Zixibacteria"[66] FCB group No

Supergroups

Despite the unclear branching order for most bacterial phyla, several groups of phyla consistently cluster together and are referred to as supergroups or superphyla. In some instances, bacterial clades clearly consistently cluster together but it is unclear what to call the group. For example, the Candidate Phyla Radiation includes the Patescibacteria group which includes Microgenomates group which includes over 11 bacterial phyla.

Candidate phyla radiation (CPR)

Main page: Biology:Candidate phyla radiation

The CPR is a descriptive term referring to a massive monophyletic radiation of candidate phyla that exists within the Bacterial domain.[67] It includes two main clades, the Microgenomates and Parcubacteria groups, each containing the eponymous superphyla and a few other phyla.

Patescibacteria

The superphylum Patescibacteria was originally proposed to encompass the phyla Microgenomates (OP11), Parcubacteria (OD1), and Gracilibacteria (GNO2 / BD1-5).[26] More recent phylogenetic analyses show that the last common ancestor of these taxa is the same node as that of CPR.[68]

Sphingobacteria

The Sphingobacteria (FCB group) includes Bacteroidota, Calditrichota, Chlorobiota, candidate phylum "Cloacimonetes", Fibrobacterota, Gemmatimonadota, Ignavibacteriota, candidate phylum "Latescibacteria", candidate phylum "Marinimicrobia", and candidate phylum "Zixibacteria".[26][69]

Microgenomates

Microgenomates was originally thought to be a single phylum although evidence suggests it actually encompasses over 11 bacterial phyla,[18][4] including Curtisbacteria, Daviesbacteria, Levybacteria, Gottesmanbacteria, Woesebacteria, Amesbacteria, Shapirobacteria, Roizmanbacteria, Beckwithbacteria, Collierbacteria, Pacebacteria.

Parcubacteria

Parcubacteria was originally described as a single phylum using fewer than 100 16S rRNA sequences. With a greater diversity of 16S rRNA sequences from uncultured organisms now available, it is estimated it may consist of up to 28 bacterial phyla.[2] In line with this, over 14 phyla have now been described within the Parcubacteria group,[18][4] including Kaiserbacteria, Adlerbacteria, Campbellbacteria, Nomurabacteria, Giovannonibacteria, Wolfebacteria, Jorgensenbacteria, Yanofskybacteria, Azambacteria, Moranbacteria, Uhrbacteria, and Magasanikbacteria.

Proteobacteria

It has been proposed that some classes of the phylum Proteobacteria may be phyla in their own right, which would make Proteobacteria a superphylum.[70] For example, the Deltaproteobacteria group does not consistently form a monophyletic lineage with the other Proteobacteria classes.[71]

Planctobacteria

The Planctobacteria (PVC group) includes Chlamydiota, Lentisphaerota, candidate phylum "Omnitrophica", Planctomycetota, candidate phylum "Poribacteria", and Verrucomicrobiota.[26][69]

Terrabacteria

Main page: Biology:Terrabacteria

The proposed superphylum, Terrabacteria,[72] includes Actinomycetota, "Cyanobacteria"/"Melainabacteria"-group, Deinococcota, Chloroflexota, Bacillota, and candidate phylum OP10.[72][73][26][69]

Cryptic superphyla

Several candidate phyla (Microgenomates, Omnitrophica, Parcubacteria, and Saccharibacteria) and several accepted phyla (Elusimicrobiota, Caldisericota, and Armatimonadota) have been suggested to actually be superphyla that were incorrectly described as phyla because rules for defining a bacterial phylum are lacking or due to a lack of sequence diversity in databases when the phylum was first established.[2] For example, it is suggested that candidate phylum Parcubacteria is actually a superphylum that encompasses 28 subordinate phyla and that phylum Elusimicrobia is actually a superphylum that encompasses 7 subordinate phyla.[70]

Historical perspective

Atomic structure of the 30S ribosomal Subunit from Thermus thermophilus of which 16S makes up a part. Proteins are shown in blue and the single RNA strand in tan.[74]

Given the rich history of the field of bacterial taxonomy and the rapidity of changes therein in modern times, it is often useful to have a historical perspective on how the field has progressed in order to understand references to antiquated definitions or concepts.

When bacterial nomenclature was controlled under the Botanical Code, the term division was used, but now that bacterial nomenclature (with the exception of cyanobacteria) is controlled under the Bacteriological Code, the term phylum is preferred.

In 1987, Carl Woese, regarded as the forerunner of the molecular phylogeny revolution, divided Eubacteria into 11 divisions based on 16S ribosomal RNA (SSU) sequences, listed below.[75][76]

Traditionally, phylogeny was inferred and taxonomy established based on studies of morphology. The advent of molecular phylogenetics has allowed for improved elucidation of the evolutionary relationship of species by analyzing their DNA and protein sequences, for example their ribosomal DNA.[87] The lack of easily accessible morphological features, such as those present in animals and plants, hampered early efforts of classification and resulted in erroneous, distorted and confused classification, an example of which, noted Carl Woese, is Pseudomonas whose etymology ironically matched its taxonomy, namely "false unit".[75] Many bacterial taxa were re-classified or re-defined using molecular phylogenetics.

The advent of molecular sequencing technologies has allowed for the recovery of genomes directly from environmental samples (i.e. bypassing culturing), leading to rapid expansion of our knowledge of the diversity of bacterial phyla. These techniques are genome-resolved metagenomics and single-cell genomics.

See also

Footnotes

  1. Until recently, it was believed than only Bacillota and Actinomycetota were Gram-positive. However, the candidate phylum TM7 may also be Gram positive.[78] Chloroflexi however possess a single bilayer, but stain negative (with some exceptions[79]).[80]
  2. Pasteuria is now assigned to phylum Bacillota, not to phylum Planctomycetota.
  3. It has been proposed to call the clade Xenobacteria[83] or Hadobacteria[84] (the latter is considered an illegitimate name[85]).

References

  1. 1.0 1.1 1.2 Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J.; Castelle, Cindy J.; Butterfield, Cristina N.; Hernsdorf, Alex W. et al. (2016-04-11). "A new view of the tree of life" (in en). Nature Microbiology 1 (5): 16048. doi:10.1038/nmicrobiol.2016.48. ISSN 2058-5276. PMID 27572647. 
  2. 2.0 2.1 2.2 2.3 2.4 Yarza, Pablo; Yilmaz, Pelin; Pruesse, Elmar; Glöckner, Frank Oliver; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Whitman, William B.; Euzéby, Jean et al. (September 2014). "Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences" (in en). Nature Reviews Microbiology 12 (9): 635–645. doi:10.1038/nrmicro3330. ISSN 1740-1534. PMID 25118885. https://www.nature.com/articles/nrmicro3330. 
  3. Bacterial phyla entry in LPSN [Euzéby, J.P. (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int J Syst Bacteriol (Microbiology Society) 47 (2): 590–2. doi:10.1099/00207713-47-2-590. ISSN 0020-7713. PMID 9103655. https://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-47-2-590. Retrieved 2019-02-23. ]
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45 4.46 4.47 4.48 4.49 4.50 4.51 Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea et al. (2016-10-24). "Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system" (in en). Nature Communications 7 (1): 13219. doi:10.1038/ncomms13219. ISSN 2041-1723. PMID 27774985. Bibcode2016NatCo...713219A. 
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 Parks, Donovan H.; Rinke, Christian; Chuvochina, Maria; Chaumeil, Pierre-Alain; Woodcroft, Ben J.; Evans, Paul N.; Hugenholtz, Philip; Tyson, Gene W. (November 2017). "Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life" (in en). Nature Microbiology 2 (11): 1533–1542. doi:10.1038/s41564-017-0012-7. ISSN 2058-5276. PMID 28894102. 
  6. 6.0 6.1 6.2 Dudek, Natasha K.; Sun, Christine L.; Burstein, David; Kantor, Rose S.; Aliaga Goltsman, Daniela S.; Bik, Elisabeth M.; Thomas, Brian C.; Banfield, Jillian F. et al. (2017-12-18). "Novel Microbial Diversity and Functional Potential in the Marine Mammal Oral Microbiome". Current Biology 27 (24): 3752–3762.e6. doi:10.1016/j.cub.2017.10.040. ISSN 1879-0445. PMID 29153320. 
  7. Oren, Aharon; Arahal, David R.; Rosselló-Móra, Ramon; Sutcliffe, Iain C.; Moore, Edward R. B. (23 June 2021). "Emendation of Rules 5b, 8, 15 and 22 of the International Code of Nomenclature of Prokaryotes to include the rank of phylum". International Journal of Systematic and Evolutionary Microbiology 71 (6). doi:10.1099/ijsem.0.004851. PMID 34161220. 
  8. Oren, Aharon; Garrity, George M. (20 October 2021). "Valid publication of the names of forty-two phyla of prokaryotes". International Journal of Systematic and Evolutionary Microbiology 71 (10). doi:10.1099/ijsem.0.005056. PMID 34694987. 
  9. 9.0 9.1 9.2 9.3 "ARB-Silva: comprehensive ribosomal RNA database". The ARB development Team. http://www.arb-silva.de/browser/. 
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 10.21 10.22 10.23 10.24 10.25 10.26 10.27 10.28 10.29 10.30 10.31 10.32 10.33 10.34 10.35 10.36 10.37 10.38 10.39 10.40 10.41 10.42 10.43 10.44 10.45 10.46 10.47 10.48 10.49 10.50 10.51 10.52 10.53 Alexander L. Jaffe, Cindy J. Castelle, Paula B. Matheus Carnevali, Simonetta Gribaldo, Jillian F. Banfield: The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. In: BMC Biology Vol. 18, Nr. 69; June 2020); doi:10.1186/s12915-020-00804-5
  11. 11.0 11.1 Tahon, Guillaume; Tytgat, Bjorn; Lebbe, Liesbeth; Carlier, Aurélien; Willems, Anne (2018-07-01). "Abditibacterium utsteinense sp. nov., the first cultivated member of candidate phylum FBP, isolated from ice-free Antarctic soil samples" (in en). Systematic and Applied Microbiology 41 (4): 279–290. doi:10.1016/j.syapm.2018.01.009. ISSN 0723-2020. PMID 29475572. http://www.sciencedirect.com/science/article/pii/S0723202018300341. 
  12. 12.0 12.1 Harris, J. Kirk; Kelley, Scott T.; Pace, Norman R. (February 2004). "New Perspective on Uncultured Bacterial Phylogenetic Division OP11". Applied and Environmental Microbiology 70 (2): 845–849. doi:10.1128/AEM.70.2.845-849.2004. ISSN 0099-2240. PMID 14766563. Bibcode2004ApEnM..70..845H. 
  13. 13.0 13.1 Rappé, Michael S.; Giovannoni, Stephen J. (2003). "The Uncultured Microbial Majority". Annual Review of Microbiology 57: 369–94. doi:10.1146/annurev.micro.57.030502.090759. PMID 14527284. 
  14. 14.0 14.1 Kenly A. Hiller, Kenneth H. Foreman, David Weisman, Jennifer L. Bowen: Permeable Reactive Barriers Designed To Mitigate Eutrophication Alter Bacterial Community Composition and Aquifer Redox Conditions. In: Appl Environ Microbiol v.81(20); 2015 Oct; pp.7114–7124. doi:10.1128/AEM.01986-15. PMC 4579450. PMID 26231655.
  15. 15.0 15.1 15.2 15.3 15.4 15.5 Hugenholtz P (1998). "Novel division level bacterial diversity in a Yellowstone hot spring". Journal of Bacteriology 180 (2): 366–76. doi:10.1128/JB.180.2.366-376.1998. PMID 9440526. 
  16. Thrash, J. Cameron; Coates, John D. (2010), "Phylum XVII. Acidobacteria phyl. Nov.", Bergey’s Manual® of Systematic Bacteriology (Springer New York): pp. 725–735, doi:10.1007/978-0-387-68572-4_6, ISBN 978-0-387-95042-6 
  17. Goodfellow, Michael (2012). "Phylum XXVI. Actinobacteria phyl. Nov.". Bergey's Manual® of Systematic Bacteriology. Springer New York. pp. 33–2028. doi:10.1007/978-0-387-68233-4_3. ISBN 978-0-387-95043-3. 
  18. 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 18.11 18.12 18.13 18.14 18.15 18.16 18.17 18.18 18.19 18.20 18.21 18.22 18.23 18.24 18.25 18.26 18.27 18.28 18.29 Christopher T. Brown, Laura A. Hug, Brian C. Thomas et al. (2015). "Unusual biology across a group comprising more than 15% of domain Bacteria". Nature 523 (7559): 208–11. doi:10.1038/nature14486. PMID 26083755. Bibcode2015Natur.523..208B. http://www.escholarship.org/uc/item/9ks7v8nv. 
  19. Tamaki, Hideyuki; Tanaka, Yasuhiro; Matsuzawa, Hiroaki; Muramatsu, Mizuho; Meng, Xian-Ying; Hanada, Satoshi; Mori, Kazuhiro; Kamagata, Yoichi (June 2011). "Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10". International Journal of Systematic and Evolutionary Microbiology 61 (Pt 6): 1442–1447. doi:10.1099/ijs.0.025643-0. ISSN 1466-5034. PMID 20622056. 
  20. Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina; Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos C. et al. (2016). "Genome-Based Taxonomic Classification of Bacteroidetes". Frontiers in Microbiology 7: 2003. doi:10.3389/fmicb.2016.02003. ISSN 1664-302X. PMID 28066339. 
  21. Wrighton, Kelly C.; Castelle, Cindy J.; Wilkins, Michael J.; Hug, Laura A.; Sharon, Itai; Thomas, Brian C.; Handley, Kim M.; Mullin, Sean W. et al. (July 2014). "Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer" (in en). The ISME Journal 8 (7): 1452–1463. doi:10.1038/ismej.2013.249. ISSN 1751-7370. PMID 24621521. 
  22. 22.0 22.1 22.2 Robert E. Danczak, M. D. Johnston, C. Kenah, M. Slattery, K. C. Wrighton, M. J. Wilkins (Sep 2017). "Members of the candidate phyla radiation are functionally differentiated by carbon- and nitrogen-cycling capabilities". Microbiome 5 (1): 112. doi:10.1186/s40168-017-0331-1. PMID 28865481. 
  23. 23.0 23.1 23.2 Dunfield, Peter F.; Tamas, Ivica; Lee, Kevin C.; Morgan, Xochitl C.; McDonald, Ian R.; Stott, Matthew B. (2012). "Electing a candidate: a speculative history of the bacterial phylum OP10" (in en). Environmental Microbiology 14 (12): 3069–3080. doi:10.1111/j.1462-2920.2012.02742.x. ISSN 1462-2920. PMID 22497633. 
  24. Mori, K.; Yamaguchi, K.; Sakiyama, Y.; Urabe, T.; Suzuki, K.-i. (2009-07-23). "Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov.". International Journal of Systematic and Evolutionary Microbiology 59 (11): 2894–2898. doi:10.1099/ijs.0.010033-0. ISSN 1466-5026. PMID 19628600. 
  25. Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; Lebedinsky, Alexander V.; Rinke, Christian; Kovaleva, Olga; Chernyh, Nikolai A.; Ivanova, Natalia et al. (2017-02-20). "Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota". Frontiers in Microbiology 8: 195. doi:10.3389/fmicb.2017.00195. ISSN 1664-302X. PMID 28265262. 
  26. 26.0 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 Rinke C (2013). "Insights into the phylogeny and coding potential of microbial dark matter". Nature 499 (7459): 431–7. doi:10.1038/nature12352. PMID 23851394. Bibcode2013Natur.499..431R. 
  27. Boone, David R.; Castenholz, Richard W.; Garrity, George M., eds (2001). Bergey's Manual® of Systematic Bacteriology. doi:10.1007/978-0-387-21609-6. ISBN 978-1-4419-3159-7. 
  28. Chouari, Rakia; Le Paslier, Denis; Dauga, Catherine; Daegelen, Patrick; Weissenbach, Jean; Sghir, Abdelghani (April 2005). "Novel Major Bacterial Candidate Division within a Municipal Anaerobic Sludge Digester". Applied and Environmental Microbiology 71 (4): 2145–2153. doi:10.1128/aem.71.4.2145-2153.2005. ISSN 0099-2240. PMID 15812049. Bibcode2005ApEnM..71.2145C. 
  29. 29.0 29.1 Hug, Laura A.; Thomas, Brian C.; Sharon, Itai; Brown, Christopher T.; Sharma, Ritin; Hettich, Robert L.; Wilkins, Michael J.; Williams, Kenneth H. et al. (2016). "Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages" (in en). Environmental Microbiology 18 (1): 159–173. doi:10.1111/1462-2920.12930. ISSN 1462-2920. PMID 26033198. https://escholarship.org/uc/item/2f1480x2. 
  30. 30.0 30.1 Rheims, H; Rainey, F A; Stackebrandt, E (September 1996). "A molecular approach to search for diversity among bacteria in the environment". Journal of Industrial Microbiology & Biotechnology 17 (3–4): 159–169. doi:10.1007/bf01574689. ISSN 0169-4146. 
  31. Patel, Bharat K. C. (2010). "Phylum XX. Dictyoglomi phyl. Nov.". Bergey's Manual® of Systematic Bacteriology. Springer New York. pp. 775–780. doi:10.1007/978-0-387-68572-4_9. ISBN 978-0-387-95042-6. 
  32. 32.0 32.1 Ji, Mukan; Greening, Chris; Vanwonterghem, Inka; Carere, Carlo R.; Bay, Sean K.; Steen, Jason A.; Montgomery, Kate; Lines, Thomas et al. (December 2017). "Atmospheric trace gases support primary production in Antarctic desert surface soil" (in en). Nature 552 (7685): 400–403. doi:10.1038/nature25014. ISSN 1476-4687. PMID 29211716. Bibcode2017Natur.552..400J. 
  33. 33.0 33.1 Youssef, Noha H.; Farag, Ibrahim F.; Hahn, C. Ryan; Premathilake, Hasitha; Fry, Emily; Hart, Matthew; Huffaker, Krystal; Bird, Edward et al. (2019-01-01). "Candidatus Krumholzibacterium zodletonense gen. nov., sp nov, the first representative of the candidate phylum Krumholzibacteriota phyl. nov. recovered from an anoxic sulfidic spring using genome resolved metagenomics" (in en). Systematic and Applied Microbiology. Taxonomy of uncultivated Bacteria and Archaea 42 (1): 85–93. doi:10.1016/j.syapm.2018.11.002. ISSN 0723-2020. PMID 30477901. 
  34. Herlemann, D. P. R.; Geissinger, O.; Ikeda-Ohtsubo, W.; Kunin, V.; Sun, H.; Lapidus, A.; Hugenholtz, P.; Brune, A. (2009-05-01). "Genomic Analysis of "Elusimicrobium minutum," the First Cultivated Representative of the Phylum "Elusimicrobia" (Formerly Termite Group 1)" (in en). Applied and Environmental Microbiology 75 (9): 2841–2849. doi:10.1128/AEM.02698-08. ISSN 0099-2240. PMID 19270133. Bibcode2009ApEnM..75.2841H. 
  35. Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N. (2001-04-01). "Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil" (in en). Applied and Environmental Microbiology 67 (4): 1874–1884. doi:10.1128/AEM.67.4.1874-1884.2001. ISSN 0099-2240. PMID 11282645. Bibcode2001ApEnM..67.1874N. 
  36. Ward, Lewis M.; Cardona, Tanai; Holland-Moritz, Hannah (2019-01-29). Evolutionary Implications of Anoxygenic Phototrophy in the Bacterial Phylum Candidatus Palusbacterota (WPS-2). doi:10.1101/534180. 
  37. Knittel, Katrin; Boetius, Antje; Lemke, Andreas; Eilers, Heike; Lochte, Karin; Pfannkuche, Olaf; Linke, Peter; Amann, Rudolf (July 2003). "Activity, Distribution, and Diversity of Sulfate Reducers and Other Bacteria in Sediments above Gas Hydrate (Cascadia Margin, Oregon)". Geomicrobiology Journal 20 (4): 269–294. doi:10.1080/01490450303896. ISSN 0149-0451. Bibcode2003GmbJ...20..269K. 
  38. 38.0 38.1 Zhang, Hui; Sekiguchi, Yuji; Hanada, Satoshi; Hugenholtz, Philip; Kim, Hongik; Kamagata, Yoichi; Nakamura, Kazunori (2003). "Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov.". International Journal of Systematic and Evolutionary Microbiology 53 (4): 1155–1163. doi:10.1099/ijs.0.02520-0. ISSN 1466-5026. PMID 12892144. 
  39. 39.0 39.1 Ley, Ruth E.; Harris, J. Kirk; Wilcox, Joshua; Spear, John R.; Miller, Scott R.; Bebout, Brad M.; Maresca, Julia A.; Bryant, Donald A. et al. (2006-05-01). "Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat" (in en). Applied and Environmental Microbiology 72 (5): 3685–3695. doi:10.1128/AEM.72.5.3685-3695.2006. ISSN 0099-2240. PMID 16672518. Bibcode2006ApEnM..72.3685L. 
  40. Guermazi, Sonda; Daegelen, Patrick; Dauga, Catherine; Rivière, Delphine; Bouchez, Théodore; Godon, Jean Jacques; Gyapay, Gábor; Sghir, Abdelghani et al. (August 2008). "Discovery and characterization of a new bacterial candidate division by an anaerobic sludge digester metagenomic approach". Environmental Microbiology 10 (8): 2111–2123. doi:10.1111/j.1462-2920.2008.01632.x. ISSN 1462-2912. PMID 18459975. 
  41. Eloe-Fadrosh, Emiley A.; Paez-Espino, David; Jarett, Jessica; Dunfield, Peter F.; Hedlund, Brian P.; Dekas, Anne E.; Grasby, Stephen E.; Brady, Allyson L. et al. (2016-01-27). "Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs" (in en). Nature Communications 7 (1): 10476. doi:10.1038/ncomms10476. ISSN 2041-1723. PMID 26814032. Bibcode2016NatCo...710476E. 
  42. Youssef, Noha H.; Farag, Ibrahim F.; Hahn, C. Ryan; Jarett, Jessica; Becraft, Eric; Eloe-Fadrosh, Emiley; Lightfoot, Jorge; Bourgeois, Austin et al. (2019-05-15). "Genomic Characterization of Candidate Division LCP-89 Reveals an Atypical Cell Wall Structure, Microcompartment Production, and Dual Respiratory and Fermentative Capacities" (in en). Applied and Environmental Microbiology 85 (10). doi:10.1128/AEM.00110-19. ISSN 0099-2240. PMID 30902854. Bibcode2019ApEnM..85E.110Y. 
  43. NCBI: Candidatus Magasanikbacteria (phylum)
  44. Di Rienzi, Sara C; Sharon, Itai; Wrighton, Kelly C; Koren, Omry; Hug, Laura A; Thomas, Brian C; Goodrich, Julia K; Bell, Jordana T et al. (2013-10-01). "The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria". eLife 2: e01102. doi:10.7554/eLife.01102. ISSN 2050-084X. PMID 24137540. 
  45. Hugenholtz, Philip; Goebel, Brett M.; Pace, Norman R. (1998-12-15). "Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity". Journal of Bacteriology 180 (24): 4765–74. doi:10.1128/jb.180.24.6793-6793.1998. ISSN 1098-5530. PMID 9733676. 
  46. Sekiguchi, Yuji; Ohashi, Akiko; Parks, Donovan H.; Yamauchi, Toshihiro; Tyson, Gene W.; Hugenholtz, Philip (2015-01-27). "First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking". PeerJ 3: e740. doi:10.7717/peerj.740. ISSN 2167-8359. PMID 25650158. 
  47. Holmes, Andrew J.; Tujula, Niina A.; Holley, Marita; Contos, Annalisa; James, Julia M.; Rogers, Peter; Gillings, Michael R. (2001). "Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia" (in en). Environmental Microbiology 3 (4): 256–264. doi:10.1046/j.1462-2920.2001.00187.x. ISSN 1462-2920. PMID 11359511. 
  48. Luecker, Sebastian; Nowka, Boris; Rattei, Thomas; Spieck, Eva; Daims, Holger (2013). "The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite Oxidizer" (in en). Frontiers in Microbiology 4: 27. doi:10.3389/fmicb.2013.00027. ISSN 1664-302X. PMID 23439773. 
  49. Mueller, Anna J.; Jung, Man-Young; Strachan, Cameron R.; Herbold, Craig W.; Kirkegaard, Rasmus H.; Wagner, Michael; Daims, Holger (March 2021). "Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting" (in en). The ISME Journal 15 (3): 732–745. doi:10.1038/s41396-020-00809-6. ISSN 1751-7362. PMID 33067588. 
  50. Spieck, Eva; Keuter, Sabine; Wenzel, Thilo; Bock, Eberhard; Ludwig, Wolfgang (May 2014). "Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum "Nitrospinae"" (in en). Systematic and Applied Microbiology 37 (3): 170–176. doi:10.1016/j.syapm.2013.12.005. PMID 24581679. https://linkinghub.elsevier.com/retrieve/pii/S0723202014000186. 
  51. LPSN: Phylum "Candidatus Parcunitrobacteria"
  52. Cindy J. Castelle, Christopher T. Brown, Brian C. Thomas, Kenneth H. Williams, Jillian F. Banfield: Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation. In: Sci Rep 7, 40101; Jan 9, 2017; doi:10.1038/srep40101
  53. Astudillo‐García, Carmen; Slaby, Beate M.; Waite, David W.; Bayer, Kristina; Hentschel, Ute; Taylor, Michael W. (2018). "Phylogeny and genomics of SAUL, an enigmatic bacterial lineage frequently associated with marine sponges" (in en). Environmental Microbiology 20 (2): 561–576. doi:10.1111/1462-2920.13965. ISSN 1462-2920. PMID 29098761. http://oceanrep.geomar.de/40160/1/emi13965.pdf. 
  54. Wrighton, K. C.; Thomas, B. C.; Sharon, I.; Miller, C. S.; Castelle, C. J.; VerBerkmoes, N. C.; Wilkins, M. J.; Hettich, R. L. et al. (2012-09-27). "Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla". Science 337 (6102): 1661–1665. doi:10.1126/science.1224041. ISSN 0036-8075. PMID 23019650. Bibcode2012Sci...337.1661W. 
  55. NCBI: Candidatus Peregrinibacteria (phylum)
  56. UniProt: Taxonomy - Candidatus Peregrinibacteria (PHYLUM)
  57. Karthik Anantharaman, Christopher T. Brown, David Burstein, Cindy Castelle: Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum. In: PeerJ 4(8):e1607; Jan 2016; doi:10.7717/peerj.1607
  58. Fieseler, Lars; Horn, Matthias; Wagner, Michael; Hentschel, Ute (June 2004). "Discovery of the Novel Candidate Phylum "Poribacteria" in Marine Sponges". Applied and Environmental Microbiology 70 (6): 3724–3732. doi:10.1128/AEM.70.6.3724-3732.2004. ISSN 0099-2240. PMID 15184179. Bibcode2004ApEnM..70.3724F. 
  59. Wiegand, Sandra; Jogler, Mareike; Kohn, Timo; Awal, Ram Prasad; Oberbeckmann, Sonja; Kesy, Katharina; Jeske, Olga; Schumann, Peter et al. (2019-10-24). The novel shapeshifting bacterial phylum Saltatorellota. doi:10.1101/817700. 
  60. Derakshani, Manigee; Lukow, Thomas; Liesack, Werner (2001-02-01). "Novel Bacterial Lineages at the (Sub)Division Level as Detected by Signature Nucleotide-Targeted Recovery of 16S rRNA Genes from Bulk Soil and Rice Roots of Flooded Rice Microcosms". Applied and Environmental Microbiology 67 (2): 623–631. doi:10.1128/aem.67.2.623-631.2001. ISSN 1098-5336. PMID 11157225. Bibcode2001ApEnM..67..623D. 
  61. Kadnikov, Vitaly V.; Mardanov, Andrey V.; Beletsky, Alexey V.; Rakitin, Andrey L.; Frank, Yulia A.; Karnachuk, Olga V.; Ravin, Nikolai V. (January 2019). "Phylogeny and physiology of candidate phylum BRC1 inferred from the first complete metagenome-assembled genome obtained from deep subsurface aquifer". Systematic and Applied Microbiology 42 (1): 67–76. doi:10.1016/j.syapm.2018.08.013. ISSN 1618-0984. PMID 30201528. 
  62. 62.0 62.1 62.2 62.3 Baker, Brett J.; Lazar, Cassandre Sara; Teske, Andreas P.; Dick, Gregory J. (2015-04-13). "Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria". Microbiome 3 (1): 14. doi:10.1186/s40168-015-0077-6. ISSN 2049-2618. PMID 25922666. 
  63. Wilson, Micheal C.; Mori, Tetsushi; Rückert, Christian; Uria, Agustinus R.; Helf, Maximilian J.; Takada, Kentaro; Gernert, Christine; Steffens, Ursula A. E. et al. (February 2014). "An environmental bacterial taxon with a large and distinct metabolic repertoire" (in en). Nature 506 (7486): 58–62. doi:10.1038/nature12959. ISSN 1476-4687. PMID 24476823. Bibcode2014Natur.506...58W. 
  64. Reysenbach, Anna-Louise; Huber, Robert; Stetter, Karl O.; Davey, Mary Ellen; MacGregor, Barbara J.; Stahl, David A. (2001), "Phylum BII. Thermotogae phy. Nov.", Bergey’s Manual® of Systematic Bacteriology (Springer New York): pp. 369–387, doi:10.1007/978-0-387-21609-6_19, ISBN 978-1-4419-3159-7 
  65. Probst, AJ; Castelle, CJ; Singh, A; Brown, CT; Anantharaman, K; Sharon, I; Hug, LA; Burstein, D et al. (February 2017). "Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations.". Environmental Microbiology 19 (2): 459–474. doi:10.1111/1462-2920.13362. PMID 27112493. https://escholarship.org/uc/item/400782gj. 
  66. Castelle, Cindy J.; Hug, Laura A.; Wrighton, Kelly C.; Thomas, Brian C.; Williams, Kenneth H.; Wu, Dongying; Tringe, Susannah G.; Singer, Steven W. et al. (2013-08-27). "Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment" (in en). Nature Communications 4 (1): 2120. doi:10.1038/ncomms3120. ISSN 2041-1723. PMID 23979677. Bibcode2013NatCo...4.2120C. 
  67. "Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life". Cell 172 (6): 1181–1197. March 2018. doi:10.1016/j.cell.2018.02.016. PMID 29522741. 
  68. Castelle, Cindy J.; Banfield, Jillian F. (2018-03-08). "Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life" (in en). Cell 172 (6): 1181–1197. doi:10.1016/j.cell.2018.02.016. ISSN 0092-8674. PMID 29522741. 
  69. 69.0 69.1 69.2 Sekiguchi Y (2015). "First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking". PeerJ 3: e740. doi:10.7717/peerj.740. PMID 25650158. 
  70. 70.0 70.1 Yarza P (2014). "Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences". Nature Reviews Microbiology 12 (9): 635–645. doi:10.1038/nrmicro3330. PMID 25118885. 
  71. Hug LA (2016). "A new view of the tree of life". Nature Microbiology Article 16048 (5): 16048. doi:10.1038/nmicrobiol.2016.48. PMID 27572647. 
  72. 72.0 72.1 "A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land". BMC Evolutionary Biology 4: 44. November 2004. doi:10.1186/1471-2148-4-44. PMID 15535883. 
  73. Battistuzzi, F. U.; Hedges, S. B. (6 November 2008). "A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land". Molecular Biology and Evolution 26 (2): 335–343. doi:10.1093/molbev/msn247. PMID 18988685. 
  74. Schluenzen F (2000). "Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution". Cell 102 (5): 615–23. doi:10.1016/S0092-8674(00)00084-2. PMID 11007480. 
  75. 75.0 75.1 Woese, CR (1987). "Bacterial evolution". Microbiological Reviews 51 (2): 221–71. doi:10.1128/MMBR.51.2.221-271.1987. PMID 2439888. 
  76. Holland L (22 May 1990). "Carl Woese in forefront of bacterial evolution revolution". The Scientist 3 (10). http://www.the-scientist.com/?articles.view/articleNo/11130/title/Carl-Woese-In-Forefront-Of-Bacterial-Evolution-Revolution/. 
  77. Stackebrandt (1988). "Proteobacteria classis nov., a name for the phylogenetic taxon that includes the "purple bacteria and their relatives"". Int. J. Syst. Bacteriol. 38 (3): 321–325. doi:10.1099/00207713-38-3-321. 
  78. Hugenholtz, P.; Tyson, G. W.; Webb, R. I.; Wagner, A. M.; Blackall, L. L. (2001). "Investigation of Candidate Division TM7, a Recently Recognized Major Lineage of the Domain Bacteria with No Known Pure-Culture Representatives". Applied and Environmental Microbiology 67 (1): 411–9. doi:10.1128/AEM.67.1.411-419.2001. PMID 11133473. Bibcode2001ApEnM..67..411H. 
  79. Yabe, S.; Aiba, Y.; Sakai, Y.; Hazaka, M.; Yokota, A. (2010). "Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria". International Journal of Systematic and Evolutionary Microbiology 61 (4): 903–910. doi:10.1099/ijs.0.024877-0. PMID 20495028. 
  80. Sutcliffe, I. C. (2011). "Cell envelope architecture in the Chloroflexi: A shifting frontline in a phylogenetic turf war". Environmental Microbiology 13 (2): 279–282. doi:10.1111/j.1462-2920.2010.02339.x. PMID 20860732. 
  81. 81.0 81.1 Stackebrandt, E.; Rainey, F. A.; Ward-Rainey, N. L. (1997). "Proposal for a New Hierarchic Classification System, Actinobacteria classis nov". International Journal of Systematic Bacteriology 47 (2): 479–491. doi:10.1099/00207713-47-2-479. 
  82. J.P. Euzéby. "List of Prokaryotic names with Standing in Nomenclature: classification of Deinococcus–Thermus". http://www.bacterio.cict.fr/classifphyla.html#DeinococcusThermus. 
  83. Bergey's Manual of Systematic Bacteriology 1st Ed.
  84. Cavalier-Smith, T (2002). "The neomuran origin of Archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification". International Journal of Systematic and Evolutionary Microbiology 52 (Pt 1): 7–76. doi:10.1099/00207713-52-1-7. PMID 11837318. 
  85. "List of Prokaryotic names with Standing in Nomenclature—Class Hadobacteria". LPSN. http://www.bacterio.cict.fr/h/hadobacteria.html.  Euzéby, J.P. (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int J Syst Bacteriol 47 (2): 590–2. doi:10.1099/00207713-47-2-590. ISSN 0020-7713. PMID 9103655. http://ijs.sgmjournals.org/cgi/reprint/47/2/590. 
  86. Boone DR; Castenholz RW (18 May 2001). Garrity GM. ed. The Archaea and the Deeply Branching and Phototrophic Bacteria. Bergey's Manual of Systematic Bacteriology. 1 (2nd ed.). New York: Springer. pp. 721. British Library no. GBA561951. ISBN 978-0-387-98771-2. https://archive.org/details/bergeysmanualofs00boon/page/721. 
  87. "The winds of (evolutionary) change: breathing new life into microbiology". Journal of Bacteriology 176 (1): 1–6. 1994. doi:10.2172/205047. PMID 8282683. 




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Biology:Bacterial_phyla
48 views | Status: cached on September 14 2024 00:20:35
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF